B. Chladni Figure
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Inaka has a disc, the circumference of which is $$$n$$$ units. The circumference is equally divided by $$$n$$$ points numbered clockwise from $$$1$$$ to $$$n$$$, such that points $$$i$$$ and $$$i + 1$$$ ($$$1 \leq i < n$$$) are adjacent, and so are points $$$n$$$ and $$$1$$$.

There are $$$m$$$ straight segments on the disc, the endpoints of which are all among the aforementioned $$$n$$$ points.

Inaka wants to know if her image is rotationally symmetrical, i.e. if there is an integer $$$k$$$ ($$$1 \leq k < n$$$), such that if all segments are rotated clockwise around the center of the circle by $$$k$$$ units, the new image will be the same as the original one.

Input

The first line contains two space-separated integers $$$n$$$ and $$$m$$$ ($$$2 \leq n \leq 100\,000$$$, $$$1 \leq m \leq 200\,000$$$) — the number of points and the number of segments, respectively.

The $$$i$$$-th of the following $$$m$$$ lines contains two space-separated integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \leq a_i, b_i \leq n$$$, $$$a_i \neq b_i$$$) that describe a segment connecting points $$$a_i$$$ and $$$b_i$$$.

It is guaranteed that no segments coincide.

Output

Output one line — "Yes" if the image is rotationally symmetrical, and "No" otherwise (both excluding quotation marks).

You can output each letter in any case (upper or lower).

Examples
Input
12 6
1 3
3 7
5 7
7 11
9 11
11 3
Output
Yes
Input
9 6
4 5
5 6
7 8
8 9
1 2
2 3
Output
Yes
Input
10 3
1 2
3 2
7 2
Output
No
Input
10 2
1 6
2 7
Output
Yes
Note

The first two examples are illustrated below. Both images become the same as their respective original ones after a clockwise rotation of $$$120$$$ degrees around the center.