You are given a string $$$t$$$ and $$$n$$$ strings $$$s_1, s_2, \dots, s_n$$$. All strings consist of lowercase Latin letters.
Let $$$f(t, s)$$$ be the number of occurences of string $$$s$$$ in string $$$t$$$. For example, $$$f('\text{aaabacaa}', '\text{aa}') = 3$$$, and $$$f('\text{ababa}', '\text{aba}') = 2$$$.
Calculate the value of $$$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} f(t, s_i + s_j)$$$, where $$$s + t$$$ is the concatenation of strings $$$s$$$ and $$$t$$$. Note that if there are two pairs $$$i_1$$$, $$$j_1$$$ and $$$i_2$$$, $$$j_2$$$ such that $$$s_{i_1} + s_{j_1} = s_{i_2} + s_{j_2}$$$, you should include both $$$f(t, s_{i_1} + s_{j_1})$$$ and $$$f(t, s_{i_2} + s_{j_2})$$$ in answer.
The first line contains string $$$t$$$ ($$$1 \le |t| \le 2 \cdot 10^5$$$).
The second line contains integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$).
Each of next $$$n$$$ lines contains string $$$s_i$$$ ($$$1 \le |s_i| \le 2 \cdot 10^5$$$).
It is guaranteed that $$$\sum\limits_{i=1}^{n} |s_i| \le 2 \cdot 10^5$$$. All strings consist of lowercase English letters.
Print one integer — the value of $$$\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} f(t, s_i + s_j)$$$.
aaabacaa 2 a aa
5
aaabacaa 4 a a a b
33
Name |
---|