B. Omkar and Last Class of Math
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

In Omkar's last class of math, he learned about the least common multiple, or $$$LCM$$$. $$$LCM(a, b)$$$ is the smallest positive integer $$$x$$$ which is divisible by both $$$a$$$ and $$$b$$$.

Omkar, having a laudably curious mind, immediately thought of a problem involving the $$$LCM$$$ operation: given an integer $$$n$$$, find positive integers $$$a$$$ and $$$b$$$ such that $$$a + b = n$$$ and $$$LCM(a, b)$$$ is the minimum value possible.

Can you help Omkar solve his ludicrously challenging math problem?

Input

Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \leq t \leq 10$$$). Description of the test cases follows.

Each test case consists of a single integer $$$n$$$ ($$$2 \leq n \leq 10^{9}$$$).

Output

For each test case, output two positive integers $$$a$$$ and $$$b$$$, such that $$$a + b = n$$$ and $$$LCM(a, b)$$$ is the minimum possible.

Example
Input
3
4
6
9
Output
2 2
3 3
3 6
Note

For the first test case, the numbers we can choose are $$$1, 3$$$ or $$$2, 2$$$. $$$LCM(1, 3) = 3$$$ and $$$LCM(2, 2) = 2$$$, so we output $$$2 \ 2$$$.

For the second test case, the numbers we can choose are $$$1, 5$$$, $$$2, 4$$$, or $$$3, 3$$$. $$$LCM(1, 5) = 5$$$, $$$LCM(2, 4) = 4$$$, and $$$LCM(3, 3) = 3$$$, so we output $$$3 \ 3$$$.

For the third test case, $$$LCM(3, 6) = 6$$$. It can be shown that there are no other pairs of numbers which sum to $$$9$$$ that have a lower $$$LCM$$$.