A permutation is a sequence of integers from $$$1$$$ to $$$n$$$ of length $$$n$$$ containing each number exactly once. For example, $$$[1]$$$, $$$[4, 3, 5, 1, 2]$$$, $$$[3, 2, 1]$$$ — are permutations, and $$$[1, 1]$$$, $$$[4, 3, 1]$$$, $$$[2, 3, 4]$$$ — no.
Permutation $$$a$$$ is lexicographically smaller than permutation $$$b$$$ (they have the same length $$$n$$$), if in the first index $$$i$$$ in which they differ, $$$a[i] < b[i]$$$. For example, the permutation $$$[1, 3, 2, 4]$$$ is lexicographically smaller than the permutation $$$[1, 3, 4, 2]$$$, because the first two elements are equal, and the third element in the first permutation is smaller than in the second.
The next permutation for a permutation $$$a$$$ of length $$$n$$$ — is the lexicographically smallest permutation $$$b$$$ of length $$$n$$$ that lexicographically larger than $$$a$$$. For example:
You are given the number $$$n$$$ — the length of the initial permutation. The initial permutation has the form $$$a = [1, 2, \ldots, n]$$$. In other words, $$$a[i] = i$$$ ($$$1 \le i \le n$$$).
You need to process $$$q$$$ queries of two types:
For each query of the $$$1$$$-st type output the required sum.
The first line contains two integers $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) and $$$q$$$ ($$$1 \le q \le 2 \cdot 10^5$$$), where $$$n$$$ — the length of the initial permutation, and $$$q$$$ — the number of queries.
The next $$$q$$$ lines contain a single query of the $$$1$$$-st or $$$2$$$-nd type. The $$$1$$$-st type query consists of three integers $$$1$$$, $$$l$$$ and $$$r$$$ $$$(1 \le l \le r \le n)$$$, the $$$2$$$-nd type query consists of two integers $$$2$$$ and $$$x$$$ $$$(1 \le x \le 10^5)$$$.
It is guaranteed that all requests of the $$$2$$$-nd type are possible to process.
For each query of the $$$1$$$-st type, output on a separate line one integer — the required sum.
4 4 1 2 4 2 3 1 1 2 1 3 4
9 4 6
Initially, the permutation has the form $$$[1, 2, 3, 4]$$$. Queries processing is as follows:
Name |
---|