Suppose you are given two strings $$$a$$$ and $$$b$$$. You can apply the following operation any number of times: choose any contiguous substring of $$$a$$$ or $$$b$$$, and sort the characters in it in non-descending order. Let $$$f(a, b)$$$ the minimum number of operations you have to apply in order to make them equal (or $$$f(a, b) = 1337$$$ if it is impossible to make $$$a$$$ and $$$b$$$ equal using these operations).
For example:
You are given $$$n$$$ strings $$$s_1, s_2, \dots, s_k$$$ having equal length. Calculate $$$\sum \limits_{i = 1}^{n} \sum\limits_{j = i + 1}^{n} f(s_i, s_j)$$$.
The first line contains one integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$) — the number of strings.
Then $$$n$$$ lines follow, each line contains one of the strings $$$s_i$$$, consisting of lowercase Latin letters. $$$|s_1| = |s_2| = \ldots = |s_n|$$$, and $$$n \cdot |s_1| \le 2 \cdot 10^5$$$. All these strings are pairwise distinct.
Print one integer: $$$\sum \limits_{i = 1}^{n} \sum\limits_{j = i + 1}^{n} f(s_i, s_j)$$$.
4 zzz bac abc acb
4015
2 a b
1337
Name |
---|