Codeforces Round 729 (Div. 2) |
---|
Finished |
Let $$$f(i)$$$ denote the minimum positive integer $$$x$$$ such that $$$x$$$ is not a divisor of $$$i$$$.
Compute $$$\sum_{i=1}^n f(i)$$$ modulo $$$10^9+7$$$. In other words, compute $$$f(1)+f(2)+\dots+f(n)$$$ modulo $$$10^9+7$$$.
The first line contains a single integer $$$t$$$ ($$$1\leq t\leq 10^4$$$), the number of test cases. Then $$$t$$$ cases follow.
The only line of each test case contains a single integer $$$n$$$ ($$$1\leq n\leq 10^{16}$$$).
For each test case, output a single integer $$$ans$$$, where $$$ans=\sum_{i=1}^n f(i)$$$ modulo $$$10^9+7$$$.
6 1 2 3 4 10 10000000000000000
2 5 7 10 26 366580019
In the fourth test case $$$n=4$$$, so $$$ans=f(1)+f(2)+f(3)+f(4)$$$.
Therefore, $$$ans=f(1)+f(2)+f(3)+f(4)=2+3+2+3=10$$$.
Name |
---|