You are given an array $$$a_1, a_2, \dots, a_n$$$, which is sorted in non-descending order. You decided to perform the following steps to create array $$$b_1, b_2, \dots, b_n$$$:
You are given the resulting array $$$b$$$. For each index $$$i$$$, calculate what is the minimum and maximum possible value of $$$d_i$$$ you can choose in order to get the given array $$$b$$$.
Note that the minimum (maximum) $$$d_i$$$-s are independent of each other, i. e. they can be obtained from different possible arrays $$$d$$$.
The first line contains the single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases.
The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$) — the length of arrays $$$a$$$, $$$b$$$ and $$$d$$$.
The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$1 \le a_i \le 10^9$$$; $$$a_i \le a_{i+1}$$$) — the array $$$a$$$ in non-descending order.
The third line contains $$$n$$$ integers $$$b_1, b_2, \dots, b_n$$$ ($$$1 \le b_i \le 10^9$$$; $$$b_i \le b_{i+1}$$$) — the array $$$b$$$ in non-descending order.
Additional constraints on the input:
For each test case, print two lines. In the first line, print $$$n$$$ integers $$$d_1^{min}, d_2^{min}, \dots, d_n^{min}$$$, where $$$d_i^{min}$$$ is the minimum possible value you can add to $$$a_i$$$.
Secondly, print $$$n$$$ integers $$$d_1^{max}, d_2^{max}, \dots, d_n^{max}$$$, where $$$d_i^{max}$$$ is the maximum possible value you can add to $$$a_i$$$.
All $$$d_i^{min}$$$ and $$$d_i^{max}$$$ values are independent of each other. In other words, for each $$$i$$$, $$$d_i^{min}$$$ is just the minimum value among all possible values of $$$d_i$$$.
432 3 57 11 1311000500041 2 3 41 2 3 4410 20 30 4022 33 33 55
5 4 2 11 10 8 4000 4000 0 0 0 0 0 0 0 0 12 2 3 15 23 13 3 15
In the first test case, in order to get $$$d_1^{min} = 5$$$, we can choose, for example, $$$d = [5, 10, 6]$$$. Then $$$b$$$ $$$=$$$ $$$[2+5,3+10,5+6]$$$ $$$=$$$ $$$[7,13,11]$$$ $$$=$$$ $$$[7,11,13]$$$.
For $$$d_2^{min} = 4$$$, we can choose $$$d$$$ $$$=$$$ $$$[9, 4, 8]$$$. Then $$$b$$$ $$$=$$$ $$$[2+9,3+4,5+8]$$$ $$$=$$$ $$$[11,7,13]$$$ $$$=$$$ $$$[7,11,13]$$$.
Name |
---|