C. Min-Max Array Transformation
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an array $$$a_1, a_2, \dots, a_n$$$, which is sorted in non-descending order. You decided to perform the following steps to create array $$$b_1, b_2, \dots, b_n$$$:

  1. Create an array $$$d$$$ consisting of $$$n$$$ arbitrary non-negative integers.
  2. Set $$$b_i = a_i + d_i$$$ for each $$$b_i$$$.
  3. Sort the array $$$b$$$ in non-descending order.

You are given the resulting array $$$b$$$. For each index $$$i$$$, calculate what is the minimum and maximum possible value of $$$d_i$$$ you can choose in order to get the given array $$$b$$$.

Note that the minimum (maximum) $$$d_i$$$-s are independent of each other, i. e. they can be obtained from different possible arrays $$$d$$$.

Input

The first line contains the single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases.

The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$) — the length of arrays $$$a$$$, $$$b$$$ and $$$d$$$.

The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$1 \le a_i \le 10^9$$$; $$$a_i \le a_{i+1}$$$) — the array $$$a$$$ in non-descending order.

The third line contains $$$n$$$ integers $$$b_1, b_2, \dots, b_n$$$ ($$$1 \le b_i \le 10^9$$$; $$$b_i \le b_{i+1}$$$) — the array $$$b$$$ in non-descending order.

Additional constraints on the input:

  • there is at least one way to obtain the array $$$b$$$ from the $$$a$$$ by choosing an array $$$d$$$ consisting of non-negative integers;
  • the sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.
Output

For each test case, print two lines. In the first line, print $$$n$$$ integers $$$d_1^{min}, d_2^{min}, \dots, d_n^{min}$$$, where $$$d_i^{min}$$$ is the minimum possible value you can add to $$$a_i$$$.

Secondly, print $$$n$$$ integers $$$d_1^{max}, d_2^{max}, \dots, d_n^{max}$$$, where $$$d_i^{max}$$$ is the maximum possible value you can add to $$$a_i$$$.

All $$$d_i^{min}$$$ and $$$d_i^{max}$$$ values are independent of each other. In other words, for each $$$i$$$, $$$d_i^{min}$$$ is just the minimum value among all possible values of $$$d_i$$$.

Example
Input
4
3
2 3 5
7 11 13
1
1000
5000
4
1 2 3 4
1 2 3 4
4
10 20 30 40
22 33 33 55
Output
5 4 2
11 10 8
4000
4000
0 0 0 0
0 0 0 0
12 2 3 15
23 13 3 15
Note

In the first test case, in order to get $$$d_1^{min} = 5$$$, we can choose, for example, $$$d = [5, 10, 6]$$$. Then $$$b$$$ $$$=$$$ $$$[2+5,3+10,5+6]$$$ $$$=$$$ $$$[7,13,11]$$$ $$$=$$$ $$$[7,11,13]$$$.

For $$$d_2^{min} = 4$$$, we can choose $$$d$$$ $$$=$$$ $$$[9, 4, 8]$$$. Then $$$b$$$ $$$=$$$ $$$[2+9,3+4,5+8]$$$ $$$=$$$ $$$[11,7,13]$$$ $$$=$$$ $$$[7,11,13]$$$.