In the world of Compfestnesia, Pak Chanek discovers a secret underground dungeon. Inside it, there is a treasure chest that is surrounded by $$$n$$$ statues that are arranged in a circular manner. The statues are numbered from $$$0$$$ to $$$n-1$$$ with statue $$$i$$$ being to the left of statue $$$i+1$$$ and statue $$$n-1$$$ being to the left of statue $$$0$$$.
Pak Chanek observes that each statue is holding a crystal ball with an integer between $$$0$$$ and $$$m-1$$$ inclusive. Let's say the integer in the crystal ball of statue $$$i$$$ is $$$a_i$$$.
The dungeon provides instructions that every integer in the crystal balls must be $$$0$$$ in order to open the treasure chest. To achieve that, Pak Chanek is given an integer $$$k$$$, and he can do zero or more operations. In a single operation, Pak Chanek does the following:
Help Pak Chanek find the minimum possible number of operations to open the treasure chest.
The first line contains three integers $$$n$$$, $$$m$$$, and $$$k$$$ ($$$2 \leq n,m \leq 10^6$$$, $$$nm \leq 2 \cdot 10^6$$$, $$$1 \leq k < n$$$) — the number of statues, the bound of the integers in the crystal balls, and the number of statues that can be operated in a single operation.
The second line contains $$$n$$$ integers $$$a_0,a_1,\ldots,a_{n-1}$$$ ($$$0 \leq a_i < m$$$) — the integers in the crystal balls.
If it is possible to perform zero or more operations so that $$$a_0=a_1=\ldots=a_{n-1}=0$$$, output the minimum number of operations required. Otherwise, output $$$-1$$$.
5 9 3 8 1 4 5 0
7
4 4 2 1 0 0 0
-1
5 5 2 1 0 0 0 0
10
In the first example, Pak Chanek can do the following operations:
Name |
---|