Codeforces Global Round 24 |
---|
Finished |
Doremy has $$$n$$$ buckets of paint which is represented by an array $$$a$$$ of length $$$n$$$. Bucket $$$i$$$ contains paint with color $$$a_i$$$. Initially, $$$a_i=i$$$.
Doremy has $$$m$$$ segments $$$[l_i,r_i]$$$ ($$$1 \le l_i \le r_i \le n$$$). Each segment describes an operation. Operation $$$i$$$ is performed as follows:
Doremy also selects an integer $$$k$$$. She wants to know for each integer $$$x$$$ from $$$0$$$ to $$$m-1$$$, the number of distinct colors in the array after performing operations $$$x \bmod m +1, (x+1) \bmod m + 1, \ldots, (x+k-1) \bmod m +1$$$. Can you help her calculate these values? Note that for each $$$x$$$ individually we start from the initial array and perform only the given $$$k$$$ operations in the given order.
The first line of input contains three integers $$$n$$$, $$$m$$$, and $$$k$$$ ($$$1\le n,m\le 2\cdot 10^5$$$, $$$1 \le k \le m$$$) — the length of the array $$$a$$$, the total number of operations, and the integer that Doremy selects.
The $$$i$$$-th line of the following $$$m$$$ lines contains two integers $$$l_i$$$, $$$r_i$$$ ($$$1\le l_i\le r_i\le n$$$) — the bounds of the $$$i$$$-th segment.
Output $$$m$$$ integers. The $$$(x+1)$$$-th integer should be the number of distinct colors in the array if we start from the initial array and perform operations $$$x \bmod m +1, (x+1) \bmod m + 1, \ldots, (x+k-1) \bmod m +1$$$.
7 5 5 3 5 2 3 4 6 5 7 1 2
3 3 3 3 2
10 9 4 1 1 2 3 3 4 7 9 6 8 5 7 2 4 9 10 1 3
6 6 7 6 5 5 7 7 7
In the first test case, the picture below shows the resulting array for the values of $$$x=0,1,2$$$ respectively.
Name |
---|