Codeforces Round 858 (Div. 2) |
---|
Finished |
You are given an array $$$a$$$ of length $$$n$$$. The score of $$$a$$$ is the MEX$$$^{\dagger}$$$ of $$$[a_1+a_2,a_2+a_3,\ldots,a_{n-1}+a_n]$$$. Find the minimum score of $$$a$$$ if you are allowed to rearrange elements of $$$a$$$ in any order. Note that you are not required to construct the array $$$a$$$ that achieves the minimum score.
$$$^{\dagger}$$$ The MEX (minimum excluded) of an array is the smallest non-negative integer that does not belong to the array. For instance:
The first line contains a single integer $$$t$$$ ($$$1\le t\le 10^4$$$) — the number of test cases. The description of test cases follows.
The first line of each test case contains a single integer $$$n$$$ ($$$2\le n\le 2\cdot10^5$$$).
The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$0 \le a_i \le 2\cdot 10^5$$$).
It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2\cdot 10^5$$$.
For each test case, output the minimum score of $$$a$$$ after rearranging the elements of $$$a$$$ in any order.
320 030 0 181 0 0 0 2 0 3 0
1 0 1
In the first test case, it is optimal to rearrange $$$a$$$ as $$$[0,0]$$$, the score of this array is the MEX of $$$[0+0]=[0]$$$, which is $$$1$$$.
In the second test case, it is optimal to rearrange $$$a$$$ as $$$[0,1,0]$$$, the score of this array is the MEX of $$$[0+1,1+0]=[1,1]$$$, which is $$$0$$$.
Name |
---|