E. Good Triples
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Given a non-negative integer number $$$n$$$ ($$$n \ge 0$$$). Let's say a triple of non-negative integers $$$(a, b, c)$$$ is good if $$$a + b + c = n$$$, and $$$digsum(a) + digsum(b) + digsum(c) = digsum(n)$$$, where $$$digsum(x)$$$ is the sum of digits of number $$$x$$$.

For example, if $$$n = 26$$$, then the pair $$$(4, 12, 10)$$$ is good, because $$$4 + 12 + 10 = 26$$$, and $$$(4) + (1 + 2) + (1 + 0) = (2 + 6)$$$.

Your task is to find the number of good triples for the given number $$$n$$$. The order of the numbers in a triple matters. For example, the triples $$$(4, 12, 10)$$$ and $$$(10, 12, 4)$$$ are two different triples.

Input

The first line of input contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Descriptions of test cases follow.

The first and only line of the test case contains one integer $$$n$$$ ($$$0 \le n \le 10^7$$$).

Output

For each test case output one integer, the number of good triples for the given integer $$$n$$$. Order of integers in a triple matters.

Example
Input
12
11
0
1
2
3
4
5
3141
999
2718
9999999
10000000
Output
9
1
3
6
10
15
21
1350
166375
29160
1522435234375
3
Note

In the first example, the good triples are $$$(0, 0, 11)$$$, $$$(0, 1, 10)$$$, $$$(0, 10, 1)$$$, $$$(0, 11, 0)$$$, $$$(1, 0, 10)$$$, $$$(1, 10, 0)$$$, $$$(10, 0, 1)$$$, $$$(10, 1, 0)$$$, $$$(11, 0, 0)$$$.

In the second example, there is only one good triple $$$(0, 0, 0)$$$.