You are given an array $$$[a_1, a_2, \dots, a_n]$$$, consisting of positive integers.
For every $$$i$$$ from $$$1$$$ to $$$n$$$, calculate $$$\sum \limits_{j=1}^{n} F(a_i + a_j)$$$, where $$$F(x)$$$ is the sum of digits of $$$x$$$.
The first line contains one integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$).
The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$1 \le a_i < 10^9$$$).
Print $$$n$$$ integers. The $$$i$$$-th of them should be equal to $$$\sum \limits_{j=1}^{n} F(a_i + a_j)$$$.
4 1 3 3 7
18 17 17 15
3 42 1337 999
38 53 47
Name |
---|