Codeforces Round 931 (Div. 2) |
---|
Finished |
Given an array $$$a$$$ of $$$n$$$ elements, find the maximum value of the expression:
$$$$$$|a_i - a_j| + |a_j - a_k| + |a_k - a_l| + |a_l - a_i|$$$$$$
where $$$i$$$, $$$j$$$, $$$k$$$, and $$$l$$$ are four distinct indices of the array $$$a$$$, with $$$1 \le i, j, k, l \le n$$$.
Here $$$|x|$$$ denotes the absolute value of $$$x$$$.
The first line contains one integer $$$t$$$ ($$$1 \le t \le 500$$$) — the number of test cases. The description of the test cases follows.
The first line of each test case contains a single integer $$$n$$$ ($$$4 \le n \le 100$$$) — the length of the given array.
The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$-10^6 \le a_i \le 10^6$$$).
For each test case, print a single integer — the maximum value.
541 1 1 151 1 2 2 385 1 3 2 -3 -1 10 343 3 1 141 2 2 -1
0 6 38 8 8
In the first test case, for any selection of $$$i$$$, $$$j$$$, $$$k$$$, $$$l$$$, the answer will be $$$0$$$. For example, $$$|a_1 - a_2| + |a_2 - a_3| + |a_3 - a_4| + |a_4 - a_1| = |1 - 1| + |1 - 1| + |1 - 1| + |1 - 1| = 0 + 0 + 0 + 0 = 0$$$.
In the second test case, for $$$i = 1$$$, $$$j = 3$$$, $$$k = 2$$$, and $$$l = 5$$$, the answer will be $$$6$$$. $$$|a_1 - a_3| + |a_3 - a_2| + |a_2 - a_5| + |a_5 - a_1| = |1 - 2| + |2 - 1| + |1 - 3| + |3 - 1| = 1 + 1 + 2 + 2 = 6$$$.
Name |
---|