G. Substring Compression
time limit per test
2 seconds
memory limit per test
1024 megabytes
input
standard input
output
standard output

Let's define the operation of compressing a string $$$t$$$, consisting of at least $$$2$$$ digits from $$$1$$$ to $$$9$$$, as follows:

  • split it into an even number of non-empty substrings — let these substrings be $$$t_1, t_2, \dots, t_m$$$ (so, $$$t = t_1 + t_2 + \dots + t_m$$$, where $$$+$$$ is the concatenation operation);
  • write the string $$$t_2$$$ $$$t_1$$$ times, then the string $$$t_4$$$ $$$t_3$$$ times, and so on.

For example, for a string "12345", one could do the following: split it into ("1", "23", "4", "5"), and write "235555".

Let the function $$$f(t)$$$ for a string $$$t$$$ return the minimum length of the string that can be obtained as a result of that process.

You are given a string $$$s$$$, consisting of $$$n$$$ digits from $$$1$$$ to $$$9$$$, and an integer $$$k$$$. Calculate the value of the function $$$f$$$ for all contiguous substrings of $$$s$$$ of length exactly $$$k$$$.

Input

The first line contains two integers $$$n$$$ and $$$k$$$ ($$$2 \le k \le n \le 2 \cdot 10^5$$$).

The second line contains the string $$$s$$$ ($$$|s| = n$$$), consisting only of digits from $$$1$$$ to $$$9$$$.

Output

Output $$$n - k + 1$$$ integers — $$$f(s_{1,k}), f(s_{2,k+1}), \dots, f(s_{n - k + 1, n})$$$.

Examples
Input
4 4
5999
Output
14 
Input
10 3
1111111111
Output
2 2 2 2 2 2 2 2 
Input
11 4
49998641312
Output
12 18 17 15 12 7 7 2