A. Fibonacciness
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

There is an array of $$$5$$$ integers. Initially, you only know $$$a_1,a_2,a_4,a_5$$$. You may set $$$a_3$$$ to any positive integer, negative integer, or zero. The Fibonacciness of the array is the number of integers $$$i$$$ ($$$1 \leq i \leq 3$$$) such that $$$a_{i+2}=a_i+a_{i+1}$$$. Find the maximum Fibonacciness over all integer values of $$$a_3$$$.

Input

The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 500$$$) — the number of test cases.

The only line of each test case contains four integers $$$a_1, a_2, a_4, a_5$$$ ($$$1 \leq a_i \leq 100$$$).

Output

For each test case, output the maximum Fibonacciness on a new line.

Example
Input
6
1 1 3 5
1 3 2 1
8 10 28 100
100 1 100 1
1 100 1 100
100 100 100 100
Output
3
2
2
1
1
2
Note

In the first test case, we can set $$$a_3$$$ to $$$2$$$ to achieve the maximal Fibonacciness of $$$3$$$.

In the third test case, it can be shown that $$$2$$$ is the maximum Fibonacciness that can be achieved. This can be done by setting $$$a_3$$$ to $$$18$$$.