Seeking a better solution for a counting problem
Difference between en1 and en2, changed 5 character(s)
Problem: Suppose $cnt(i)$ represents the number of occurrences of $i$ in array $A$ of length $n$ whose elements are between $1$ and $n$. An array is called a $k$-good array if and only if $cnt(k)=k$. Let $f(k)$ be the number of all $k$-good arrays. You are to calculate the $\sum\limits_{k=1}^n f(k)$. ↵

This problem looks like some dp problems which can be reduced to a simper form and solved by Kunth's Mechanical Summation. But I haven't thought up a good solution.↵

Could you share your ideas about this problem?

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en2 English AngelKnows 2021-01-22 07:03:34 5 Tiny change: 'number of $k$-good array. You are ' -> 'number of all $k$-good arrays. You are '
en1 English AngelKnows 2021-01-22 06:58:27 563 Initial revision (published)