How to solve this problem?
find the number of permutations of length N that have longest increasing subsequence equal to K
1<=N<=40 , 1<=K<=5 problem link
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | maomao90 | 163 |
2 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
How to solve this problem?
find the number of permutations of length N that have longest increasing subsequence equal to K
1<=N<=40 , 1<=K<=5 problem link
Can anyone help me to solve this problem?
Given a sequence A (of length N) of positive integers and an integer k, find out how many of its sub-sequences are k-medial. where k-medial means that the median of this subsequence is k. A sub-sequence of A is any sequence {A[i], A[i+1], A[i+2] ... A[j]}, where 0 ≤ i ≤ j < N.
if you participated in national olympiads or IOI talk about your strategy
Название |
---|