HINT 1
HINT 2
HINT 3
HINT 1
HINT 2
HINT 3
HINT 4
HINT 1
HINT 2
5A. K-th Number in the Union of Segments
HINT 1
HINT 1
HINT 2
HINT 1
HINT 2
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 158 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Average should be in double not int or long long.
Any length is ok as long as the average is maximum.
Try a test case that all number is 0.
It is a DAG so we can use top sort + DP to get shortest path.
Binary search for the average, minus average on every edge.
If the shortest path is <= 0, it means we can have an even lower average. If the shortest path is > 0, it means this average is too high. Note, we don't need to find a path that is exactly 0 cost. Binary search will help us narrow down.
1 might not be the only source, so we need to push all in degree 0 to queue first.
(a+b)/(c+d) > m => a+b > (c+d)*m => a-m*c + b-m*d > 0
Binary search for m.
5A. K-th Number in the Union of Segments
Just follow what theory says
k should be 0 indexed for the theory, so [1, n^2] becomes [0, n^2-1]. Because cnt(x) could return 0, we need k to start from 0, otherwise 1 will be skipped.
There is a trick to get O(n) for cnt(x). Start from bottom left and count towards upper right, if mid > i*j, move j, otherwise move i.
k should be 0 indexed.
Sort both array and use two pointers method for cnt(x). Start from 0 of first array and start from n-1 of second array.
Name |
---|
have you read the terms of agreement?
Personally I don't see the point of the agreement.
USELESS ALGORITHM
that's why you are a newbie