Блог пользователя darkkcyan

Автор darkkcyan, история, 3 года назад, По-английски

Hello Codeforces!

We are glad to invite you to take part in mirror round of the first round of VNOI Cup, which will take place at 13:00 UTC, on this Saturday, 18th June, and it is hosted on our builtin platform — VNOJ!

round1-poster

If you are Vietnamese and qualified according to these rules mentioned on this post, please consider taking part in the official round!

VNOI Cup is a Competitive Programming competition held by VNOI (Vietnam Olympiads in Informatics community), which is a non-profit organization, by Vietnamese competitive programmers, for Vietnamese competitive programmers. Our aim is to support the growth of competitive programming in Vietnam, and we hope that this competition is one of the things that follows this aim!

There are 3 elimination rounds and a Final round in this competition. In this elimination round, there will be 5 problems to solve in a duration of $$$150$$$ minutes. The problem statements for the mirror rounds will be in English. We have worked our best to make sure that the round have a good range of difficulties, so we welcome everybody to join this mirror round!

Remember that the round will take place at 13:00 UTC, on this Saturday, 18th June, and you can take part in the round via this link!

The next two rounds will also be close by, so be prepared!

  • Round 2 will be held on 25th June.
  • Round 3 will be held on 2nd July.

Hope you enjoy the rounds and thank you for participating! <3

  • Проголосовать: нравится
  • +147
  • Проголосовать: не нравится

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Auto comment: topic has been updated by darkkcyan (previous revision, new revision, compare).

»
3 года назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

Will there be subtasks and partial scores ?

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +8 Проголосовать: не нравится

    There will be subtasks. To get the score for one subtask, you must solve every tests in that subtask correctly.

    Thanks, I will update this fact in the post soon!

»
3 года назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

Highly recommend you guys to take part in the mirror, the problems are superb!

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

What’s the approximate difference of problems?

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    You mean difficulties? :))

    I don't want to spoil too much about the details, but there are easy, and there are challenging problems as well. We welcome everyone to come and try out our challenges!

»
3 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Why this website is having the same UI as DMOJ?

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +11 Проголосовать: не нравится

Last problem was a bit tricky, i wish there was more time :( Will we be able to upsolve the problems ?

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    Yes. But please wait for us to finalize the result first! We will publish the problems shortly!

»
3 года назад, # |
  Проголосовать: нравится +13 Проголосовать: не нравится

Can you take a quick minute to leave us a review? Thank you so much!

»
3 года назад, # |
  Проголосовать: нравится +13 Проголосовать: не нравится

I think this was a good contest. The problem statements were clear, and most were relatively short. All the problems were good practise.

»
3 года назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

From VNOI with love:3

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I enjoyed the problems though I wonder if there is anything better for E than doing cheese $$$O(N^2/64)$$$ knapsack with bitsets

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +10 Проголосовать: не нравится

    You can speed up the subset sum part by grouping components with same size. The tricky part is the case where we need to partition one such component into two parts. We can use the divide and conquer trick (similar to 1442D - Sum) and obtain an $$$O(N\sqrt{N}log{\sqrt{N}})$$$ solution.