Блог пользователя FairyWinx

Автор FairyWinx, история, 2 года назад, По-русски

Задача A. Идея Igorbunov

Hint 1
Решение

Задача B. Идея FairyWinx

Hint 1
Hint 2
Hint 3
Hint 4
Решение

Задача C. Идея FairyWinx

Hint 1
Hint 2
Hint 3
Решение

Задача D. Идея FairyWinx

Hint 1
Hint 2
Решение

Задача E. Идея FairyWinx

Hint 1
Hint 2
Hint 3
Решение

Задача F. Идея TeaTime

Пока разбор доступен в английской версии. Перевод появится скоро (или не очень).

Разбор задач Codeforces Round 818 (Div. 2)
  • Проголосовать: нравится
  • +83
  • Проголосовать: не нравится

»
2 года назад, # |
  Проголосовать: нравится +2 Проголосовать: не нравится

В задаче А n/2 и n/3 надо умножать на 2 дополнительно чтобы считать реверснутые пары

»
2 года назад, # |
Rev. 2   Проголосовать: нравится +54 Проголосовать: не нравится

I have another solution for D.

We will try to count the number of people for whom we can guarantee that they won't win. Let's call it $$$ans$$$.

Then the answer will be $$$2^n - ans$$$

Let's look at stupid solution and try to optimize it:

stupid

Pretty familiar, right?)

Let's iterate over values of $$$n$$$, and try to find a number of times, when $$$k$$$ will be equal to zero. Let's call this new $$$n$$$ = $$$m$$$. Then we will end up with $$$k$$$ = 0 exactly $$${n - m - 1 \choose k}$$$ times! Why? At first I thought that it has to be $$${n - m \choose k + 1}$$$, but our last move is always fixed! We have to go to $$$solve(n - 1, k - 1)$$$, because we are finding the first time, when $$$k$$$ = 0. Logic here is the same as in Pascal's Triangle.

My solution: 170668170

»
2 года назад, # |
  Проголосовать: нравится -9 Проголосовать: не нравится

Auto comment: topic has been translated by purplesyringa (original revision, translated revision, compare)

»
2 года назад, # |
Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

IMPORTANT ISSUE(S)

  • My solution for C is literal garbage and shouldn't have worked but it did, please, anyone uphack me if you could! 170616890
  • ($$$\LaTeX$$$ for D is broken please fix) — upd: noticed fix. thanks!
»
2 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

In problem E, why the number of pairs (a,b) that are co-primes and sums to n is phi[n]? I only knew that phi[n] counts the number of integers between 1 and n which are coprime to n.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +39 Проголосовать: не нравится

    If $$$a$$$ is relatively prime to $$$n$$$, $$$a$$$ must also be relatively prime to $$$n-a$$$.

    The proof is simple: assume $$$n-a$$$ is not relatively prime to $$$a$$$, then that implies some $$$d>1$$$ divides $$$n-a$$$ and $$$a$$$. However, this implies that $$$d$$$ also divides $$$n-a + a = n$$$, so $$$a$$$ is not relatively prime to $$$n$$$, a contradiction.

    Given this, the pairs are just $$$(a, n-a)$$$, where $$$a$$$ is relatively prime to $$$n$$$, so there are $$$\varphi(n)$$$ of them.

    • »
      »
      »
      2 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      an easier proof: $$$gcd(a,n)=gcd(a,n-a)$$$. simply think of how the euclidean algorithm works.

»
2 года назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

Why does my solution get memory exceeded for Problem B? https://codeforces.net/contest/1717/submission/170674893

»
2 года назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

Two corrections:

  1. $$$A$$$'s solution: Answer should be $$$n+2\cdot (\lfloor \dfrac{n}{2} \rfloor + \lfloor \dfrac{n}{3} \rfloor)$$$ not $$$n+\lfloor \dfrac{n}{2} \rfloor + \lfloor \dfrac{n}{3} \rfloor$$$ to account for ordered pairs.
  2. $$$C$$$'s hint $$$1$$$: It should be we've got a problem if $$$b_i>b_{i+1}+1$$$ not $$$b_i\geq b_{i+1}+1$$$ as $$$b_i=b_{i+1}+1$$$ is fine.
»
2 года назад, # |
  Проголосовать: нравится -6 Проголосовать: не нравится

Auto comment: topic has been updated by purplesyringa (previous revision, new revision, compare).

»
2 года назад, # |
  Проголосовать: нравится +26 Проголосовать: не нравится

I just published the tutorial for problem F. I had to write it myself instead of translating the problemsetter's editorial because apparently one the original editorialist's solution was hacked, he got sad and got drunk. I'm only half kidding. So I took the opportunity to provide more of a chain of thought rather than a concise tutorial. Hope you don't mind.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +9 Проголосовать: не нравится

    Excuse me, I have some confusion:

    How to avoid this situation:

    A flow go to the node $$$u_i$$$ where $$$s_{u_i} = 0$$$ , instead of going to the $$$v_i$$$ where $$$s_{v_i}=1$$$. However, $$$v_i$$$ needs this flow to make its value $$$b_{v_i}$$$ equal to $$$a_{v_i}$$$.

    • »
      »
      »
      2 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      You're absolutely right, this was a bug. I saw some code related to that in people's solutions, but didn't realize that's what it was doing. Should be fixed now. Read starting from "What about vertices with $$$s_v = 0$$$?".

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +8 Проголосовать: не нравится

    :/

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +12 Проголосовать: не нравится

    Imagine getting drunk, could not be me

»
2 года назад, # |
  Проголосовать: нравится -20 Проголосовать: не нравится

thank you for the round, next time keep your math problems to yourself.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

good problems to attack my brain.

(though I've just had a vp

»
2 года назад, # |
Rev. 5   Проголосовать: нравится 0 Проголосовать: не нравится

Problem A

  • since
$$$ {lcm(a,b)}= {ab \over gcd(a,b)} $$$
  • given
$$$ {lcm(a,b) \over gcd(a,b)} <= 3 $$$
  • then
$$$ {{ab} \over (gcd(a,b))^2 } \le 3 $$$
  • since
$$$ 1<=a<=b<=n $$$

gcd(a,b) will be in range [1, n], therefore if gcd(a,b)==1 then a=1 and b is multiple of 1 , if gcd(a,b)==2 then b should be multiple of 2 , for gcd(a,b)==3 (b=3*a) ...etc.

  • thus
$$$ b= m a $$$

where m is an integer.

$$${ab \over {(gcd(a,b))^2}}= {{a*a*m \over (gcd(a,am))^2}}= {a*a*m \over a^2}= m$$$
  • hence
$$$m \le 3$$$
  • b=a*m , where m={1,2,3}
  • now when m=1 therefore b=a , since 1<=a<=n there will be n solutions
    • example : (1,1), (2,2) ,(3,3)....(n,n)
  • for m=2 b=2*a there will be 2* [n/2] solutions
    • example : (1,2) , (2,1), (2,4), (4,2)....([n/2],2*[n/2]),(2*[n/2],[n/2])
  • for m=3 b=3*a there will be 2* [n/3] solutions
    • example : (1,3),(3,1), (2,6),(6,2)....([n/3],3*[n/3]),(3*[n/3],[n/3])
  • so by proof solution is: n+ 2*[n/3]+2*[n/2]
»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In D, the answer is:

$$$ \begin{align} [x^k]\frac{(1+x)^n}{1-x} \end{align} $$$

which can be computed using FFT.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +6 Проголосовать: не нравится

    I realized that is is absolutely unnecessary to use FFT here after reading the editional. I tried to find the generating function for the answer but it turned out to be just the sum of binomial coefficients.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    For all k, $$$[x^k](1+x)^n$$$ is just $$$\binom{n}{k}$$$. Notice that $$$[x^k]F(x)/(1-x)$$$ is summing up the coefficients of $$$[x^j]F(x)$$$, where $$$j\le k$$$. So the answer is the sum of binomial coefficients.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can someone please explain the solution to problem A in easy steps?

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    Well, let $$$g = \gcd(a, b)$$$ and $$$a = ga_0$$$ and $$$b = gb_0$$$, where $$$\gcd(a_0, b_0) = 1$$$. So, here we have $$$\mathrm{lcm}(a, b) = \frac{ab}{\gcd(a, b)} = \frac{g^2a_0b_0}{g} = ga_0b_0$$$. Thus, $$$\frac{\mathrm{lcm}(a, b)}{\gcd(a, b)} = a_0b_0 \leq 3$$$. So, here we have $$$3$$$ cases:

    • $$$a_0b_0=3$$$, in this case we have $$$(a_0, b_0) = (1, 3), (3, 1)$$$, thus, we have $$$(a, b) = (3k, k), (k, 3k)$$$. Note that it is sufficient for $$$3k \leq n$$$, because this automatically gives $$$k \leq n$$$. Thus, here there are $$$2\lfloor \frac{n}{3} \rfloor$$$ solutions. (Because $$$(a, b)$$$ is not the same as $$$(b, a)$$$)
    • Similar logic to the above case. Answer is $$$2 \lfloor \frac{n}{2} \rfloor$$$ in this case.
    • Similar logic to the above case. Answer is $$$n$$$ in this case.

    Adding all of them up, we have the answer as $$$2\lfloor \frac{n}{3} \rfloor + 2 \lfloor \frac{n}{2} \rfloor + n$$$.

»
2 года назад, # |
Rev. 5   Проголосовать: нравится +62 Проголосовать: не нравится

In problem E, the answer is:

$$$ \begin{align} ans &= \sum_{k=1}^{n} \sum_{a=1}^{\lfloor \frac{n}{k} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{k}\rfloor} lcm(n-ak-bk,k) [gcd(a,b)=1] [ak+bk \le n] \\ &= \sum_{k=1}^{n} \sum_{a=1}^{\lfloor \frac{n}{k} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{k} \rfloor} \frac{k(n-ak-bk)}{gcd(k,n)} [gcd(a,b)=1] [ak+bk \le n] \\ &= \sum_{k=1}^{n} \frac{k}{gcd(k,n)} \sum_{a=1}^{\lfloor \frac{n}{k} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{k} \rfloor} (n - ak - bk)[ak+bk \le n] \sum_{d | gcd(a, b)} \mu(d) \\ &= \sum_{k=1}^{n} \sum_{d=1}^{\lfloor \frac{n}{k} \rfloor} \frac{k}{gcd(k,n)} \mu(d) \sum_{a=1}^{\lfloor \frac{n}{kd} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{kd} \rfloor - a} n - akd - bkd \\ &= \sum_{k=1}^{n} \sum_{d=1}^{\lfloor{\frac{n}{k}}\rfloor}\frac{k}{gcd(k,n)}\mu(d)(\frac{n \lfloor \frac{n}{kd}\rfloor (\lfloor \frac{n}{kd} \rfloor - 1)}{2}+\frac{k d \lfloor \frac{n}{kd} \rfloor (1 - {\lfloor \frac{n}{kd} \rfloor}^{2})}{3}) \\ &= \sum_{k=1}^{n} \sum_{d=1}^{\lfloor{\frac{n}{k}}\rfloor}\frac{k}{gcd(k,n)}\mu(d)(\frac{\lfloor \frac{n}{kd} \rfloor (1 - \lfloor \frac{n}{kd} \rfloor) (2kd\lfloor \frac{n}{kd}\rfloor + 2kd - 3n)}{6}) \end{align} $$$

Where $$$\mu(n)$$$ is mobius function. This can be computed in $$$O(N \log N)$$$

»
2 года назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

should problem A really be rated 800 ?

»
2 года назад, # |
  Проголосовать: нравится +21 Проголосовать: не нравится

Alternate way of looking at D

Consider the path from each leaf to the root. The path will see "winning" and "losing" edges. Now associate an $$$n$$$-bit binary number to each leaf. This number will have a $$$1$$$ at position $$$i$$$ if the $$$i^{th}$$$ edge on the path was a winning edge and $$$0$$$ otherwise. Convince yourself that this number will be different for each leaf. Now for a leaf to win, all $$$0$$$s in its number must be changed to $$$1$$$. So Madoka will assign lower valued leaves, binary numbers with less number of $$$0$$$s. It is easy to see that the answer is the largest number having $$$k$$$ zeroes in its assigned number which is $$$\sum_{i = 0}^{min(n,k)} \binom{n}{i}$$$.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can Anyone Explain Problem B. Madoka and Underground Competitions I am Struggling to implement it

»
2 года назад, # |
  Проголосовать: нравится +32 Проголосовать: не нравится

Another way to solve E:

$$$\sum lcm(c,\gcd(a,b)) = \sum \frac{c \cdot \gcd(a,b)}{\gcd(a,b,c)} = \sum \frac{(n-a-b) \cdot \gcd(a,b)}{\gcd(a,b,n-a-b)} = \sum \frac{(n-a-b) \cdot \gcd(a,b)}{\gcd(a,b,n)}$$$

We can fix $$$\gcd(a,b) = d$$$, and calculate $$$cnt[d] ~- $$$ number of pairs $$$(a;b)$$$ that $$$\gcd(a,b)$$$ has $$$d$$$ as divisor.

$$$cnt[d] = \displaystyle \sum_{k=2}^{k \cdot d < n} { (k-1) * (n-a-b)} = \displaystyle \sum_{k=2}^{k \cdot d < n} { (k-1) * (n-k \cdot d)}$$$

Then we have to make inclusion/exclusion to make $$$cnt[d] ~- $$$ number of pairs $$$(a;b)$$$ that $$$\gcd(a,b) = d$$$.

So, the answer will be $$$\displaystyle \sum_{d=1}^{d \le n} { \frac {cnt[d] \cdot d} {\gcd(d,n)}} $$$.

Overall, $$$O(NlogN)$$$.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Почему ф(n-c/d) в Е? Думаю что а может быть больше чем n-c.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Problem D video editorial with code!

»
2 года назад, # |
  Проголосовать: нравится -13 Проголосовать: не нравится

Problem D can be converted as follows:

Given a complete binary tree with $$$2^n$$$ different leaf nodes, and initially $$$2^n-1$$$ portals that connect each internal node with its left child node.

Madoka starts at the root node. From one internal node, she can move to its left child node instantly (in zero minutes) via portal. But to move to its right child node, she must walk, and it takes one minute.

Now she wants to know the number of different leaf nodes she can possibly reach within $$$k$$$ minutes.

For example, in a tree with $$$4$$$ leaf nodes and $$$3$$$ bridges, initially, Madoka can already reach one leaf node (the left most one) without taking time. If $$$k=1$$$, she can possibly reach $$$3$$$ different leaf nodes (all but the right most one). If $$$k \ge 2$$$, then all $$$4$$$ leaf nodes.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    Sorry for posting such an unhelpful and immature comment. Your down votes made me realize that. I shall be careful next time.

    • »
      »
      »
      2 года назад, # ^ |
        Проголосовать: нравится +1 Проголосовать: не нравится

      As for me, personally I think your comment is helpful. I've been troubled by understanding the problem for a long time. Now I have understood it! Thank you! :)

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How does one stop over-complicating the solution, for C, we know, we got to know b[i]<=b[i+1]+1, how do we stop there, my mind will want the proof, or at least be pessimistic enough to not let me code the solution because I would assume it should be more complicated than that, any tips?

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Its good if you are not stopping there because you should not. Just one more observation is required that you should look at minimum number in array a.

»
2 года назад, # |
Rev. 2   Проголосовать: нравится +14 Проголосовать: не нравится

Lmao, I think problem F can be solved with some cheesy 2-SAT with random walks. Just keep randomly swapping edges and keep track of indegrees of each node. We know each node v that has s[v] == 1 has a certain required in degree and a required out degree.

If for all nodes, your current in degree is at the required in degree, you have a valid solution. If for all nodes, your current in degree is at the required out degree, you have a valid solution by flipping all the edges. This makes it a lot better than regular 2-SAT since you have 2 possible hits instead of just one, I think this is why you can go quite a bit under the O(n^2) requirement for regular 2-SAT.

I was able to get an AC while upsolving while just using 10^7 iterations, (I expected I'd need more). My solution is literally just 100 lines and I was able to code it tipsy.

Useful Link about 2-SAT: https://www.cl.cam.ac.uk/teaching/1920/Probablty/materials/Lecture7.pdf

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится
  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    This is not the classical 2-SAT algorithm though. The "default" solution to 2-SAT is computing SCC on the graph of implications. What you're doing is much more generic than 2-SAT, it's kind of gradient descent.

    Did anyone try some sort of simulated annealing?

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +11 Проголосовать: не нравится

    I hacked your solution and got "unexpected verdict", which usually means a solution that the author marked as correct failed on the hack. Anyway, I tested your code locally and it failed on the test case (basically, just make a directed path of length $$$10^4$$$).

    • »
      »
      »
      2 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Oh oof, I guess my AC was just a bit of luck as well as some weak test cases (they probably only put 1 test case with m = 10000)

      • »
        »
        »
        »
        2 года назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        No, there were some test cases with large $$$m$$$. Your method fails when there's a long path of edges that need to be oriented correctly, and maybe the author's test cases were randomly generated in a way that doesn't create long paths.

»
2 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

I've got a good solution for D.

https://postimg.cc/94p4yLvq

In the image above: Basically, I'm trying to find out for each position, how many changes it would take to make that position holder win (when every time Madoka choose left one to win.) So the last line shows, how many changes we will have to make to make that node holder win. (0,1,1,2,...)

We can observe now, suppose we have found out for first 2^i positions. So what will the changes needed for the next 2^i positions?
first 2^i: 1,2,3,4,..k...2^i; second 2^i : 1,2,3,4...k...2^i;

Second k would need changes=changes first k needs+1; (It is easy to see that)

Now we can observe a pattern here. Pascal Triangle Pattern; if n=1 (N=2^1): 0 needed by 1, 1 needed by 1; if n=2 (N=2^2) : 0 needed by 1, 1 needed by 2, 2 needed by 1; ....so on so it would look like: 1 1 1 1 2 1 1 3 3 1 ...

so the final thing we wanna do is just find nth row of pascal triangle and do the prefix sum till min(k,n); and this would be our answer. Coz we are just trying to count how many positions can sponsor make win. So say they can make any position amongst the k positions, then answer would be k. coz Madoka would put the first k smallest there.

Excuse for the poor explanation.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    hey, your explanation is pretty good, I got to the same kind of reasoning during the contest. Could you (or anyone!) elaborate on the idea of calculating the n-th row of Pascal's triangle fast? Based on your solution I can see that it is based on Fermat's theorem but I cannot understand it fully.

    Any link to the place where this is explained would be helpful!

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I suck at these kind of problem C. Also, how to get familiar with these type of induction proofs?

»
2 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Is the complexity analysis in F correct? I know Dinic's complexity reduces to $$$E\sqrt{V}$$$ on special type of unit graph, but this graph is weighted. Intuitively it feels that the algorithm will be fairly fast, but is there a rigorous proof of complexity in this case?

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone please explain problem C's solution in some simple language?

  • »
    »
    2 года назад, # ^ |
    Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

    As far as I have understood... First of all its obv that for all i, ai <= bi. Then it is necessary that for each element it should be either ai = bi or bi <= bi+1 + 1. Now given that these conditions are satisfied, we can always make both arrays equal in the following way. If at each step we pick the min element such that ai != bi, we are sure that bi <= bi+1 + 1. So lets suppose ai <= ai+1 then we can simply increment ai to ai + 1. The other case, ai > ai+1, is never possible because if ai+1 != bi+1 then we would have chosen ai+1 as the smallest element else if ai+1 = bi+1, then bi > ai > bi+1... which means bi > bi+1 + 1 which contradicts our initial condition. Hence, we will always be able to increment the min element until it reaches its target for each element.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can anyone provide the solution explanation of problem B ?

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Let us try to construct the matrix starting from $$$(r,c)$$$. Assume the matrix is as follows when there is one X on $$$(r,c)$$$. (This is the fifth example btw)

    ......
    ......
    ......
    .X....
    ......
    ......
    

    Note that this mark on $$$(r,c)$$$ cannot affect other rows or columns, we fill a full diagonal with marks. After this step the matrix is as follows.

    ....X.
    ...X..
    ..X...
    .X....
    X.....
    ......
    

    Now, let's find some other cells we need to fill. After we fill these cells which have $$$k$$$ horizontal distance relative to the line, we can see that it has $$$k$$$ vertical distance as well.

    ....X.
    X--X..
    |.X|..
    |X.|..
    X--X..
    ......
    

    And, of course, these marks did not affect other rows or columns, so we need to construct diagonals based on these cells as well.

    .X..X.
    X..X..
    ..X..X
    .X..X.
    X..X..
    ..X...
    

    And after that we need to construct marks based on the new diagonals, and the diagonals based on the marks, and so on.This goes on until the matrix fits the criteria. By inductive proof (same logic as we did above), we can prove that the diagonals we just marked are the one $$$(r,c)$$$ is on, and the ones whose horizontal/vertical distance to the original diagonal is a multiple of $$$k$$$. This gives us a formula, $$$r+c \equiv x+y \,(mod\, k)$$$ (think of the grid as a graph on a plane, really. you'll get my point). Therefore, the proof is finished and you can construct a relatively simple code based on what we just proved.

    • »
      »
      »
      11 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Sorry to bother you. Can you elaborate a bit more on how did you arrive on the formula (r+c ≡ x+y(mod k)) ? I understood everything apart from this particular thing.

      • »
        »
        »
        »
        11 месяцев назад, # ^ |
        Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

        Actually, it's fine either way you perceive it, $$$r-c \equiv x-y \pmod{k}$$$ will also AC. We just want the marks to be placed in some diagonal lines, and we want these diagonal lines to be have a (manhattan) distance of multiples of $$$k$$$ with each other.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

It would be helpful if the first few test cases always contained edgecases/ tricky ones. That way we can upsolve a problem without looking at tutorial or other's solution. Consider this submission. I have no idea what went wrong. I even can't debug it because I don't know the case.