Given two lines L1 and L2, How can I determine whether they are parallel or not? Here L1 contains (x1,y1)(x2,y2) and L2 contains (X3,y3)(x4,y4)
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3741 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3489 |
7 | Radewoosh | 3483 |
8 | Kevin114514 | 3442 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
2 | atcoder_official | 162 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | nor | 150 |
Given two lines L1 and L2, How can I determine whether they are parallel or not? Here L1 contains (x1,y1)(x2,y2) and L2 contains (X3,y3)(x4,y4)
Название |
---|
I find the nicest way is to use cross product. This avoids any potential division by zero.
Let $$$L_1$$$ be defined by points $$$P_1$$$ and $$$P_2$$$ and $$$L_2$$$ be defined by points $$$P_3$$$ and $$$P_4$$$. Then $$$(P_2 - P_1) \times (P_4 - P_3) = 0$$$ if and only if $$$L_1$$$ and $$$L_2$$$ are parallel. Of course, when using floating points you would rather check if the absolute value of the cross product is less than some very small number, probably something like $$$\epsilon = 10^{-9}$$$.