I know it may not be relevant to cp but i see some editorials talk about this formula. And how can we generalize it for polynomial of nth degree.
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 162 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
5 | Dominater069 | 157 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 148 |
I know it may not be relevant to cp but i see some editorials talk about this formula. And how can we generalize it for polynomial of nth degree.
Name |
---|
Basically, it manifests the relationship between the coefficients and roots of a polynomial. Consider a quadratic equation $$$ax^2 + bx + c$$$. Lets suppose that $$$\alpha$$$ and $$$\beta$$$ are the roots of this equation, then:
$$$\alpha + \beta$$$ = $$$-b / a$$$
$$$\alpha \beta$$$ = $$$c / a$$$
I am pretty sure that you are familiar with this relationship without knowing the fact that it is called the "Vieta's formula"