please say me , how solve this problem with this tag ---> " math " ?! are there other problems like this in math (not in programming) that i practis on them to solve this one ? B. Jumping Jack
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | adamant | 151 |
7 | djm03178 | 151 |
7 | luogu_official | 151 |
10 | awoo | 146 |
please say me , how solve this problem with this tag ---> " math " ?! are there other problems like this in math (not in programming) that i practis on them to solve this one ? B. Jumping Jack
Name |
---|
After n jumps, if you jump always to the right, you'll be at point p = 1 + 2 + 3 + 4 + ... + n. If, instead of jumping right, you jumped left in the kth jump, you would be at point p - 2k. Moreover, by carefully choosing which jumps to go left and which to go right, after n jumps, you can be at any point between n * (n + 1) / 2 and - (n * (n + 1) / 2) with the same parity as n * (n + 1) / 2. So, what you must do is simulate the jumping process, always jumping to the right, and if at some point, you've reached a point that has the same parity as x and is at or beyond x, you'll have your answer.
MERCI !