shortest single cycle in an unweighted graph n<=1e6
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 158 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
shortest single cycle in an unweighted graph n<=1e6
Name |
---|
Is it a directed or an undirected graph?
If it's an undirected graph, you can construct a DFS Tree, and every back-edge defines a cycle
Shortest cycle length here $$$= 3$$$, not defined by only one back edge
I think this can help you
orz dequy hai
dijme pupil rack
It can't be solved in better than $$$O(nm)$$$, where $$$m$$$ is the number of edges.
https://en.m.wikipedia.org/wiki/Girth_(graph_theory)#Computation
i can help u, ib for the perfect solution