Как решить эту задачку. Подкиньте идею, пожалуйста.
Я вот думаю, может она решается матричным перемножением, предподсчетом или же какой-нибудь замудрённой формулой.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | maomao90 | 163 |
2 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
Название |
---|
Может предпосчет на такие числа как 10, 100, 1000 ... 10^15. B затем пошагово отнимать. Опять же "может".
Скорее мудрёной формулой. Добавляем для удобства спереди -0, считаем 0 однозначным числом. Теперь разбиваем на блоки однозначных, двузначных и т.д. чисел, последний блок окажется неполным.
В любом полном блоке чётное число цифр, т.к. чисел чётное количество, и каждое состоит из одного и того же числа цифр. Поэтому каждый блок начинается со знака -.
Пусть блок нечётный. Разобьём блок на пары чисел [первое число всегда чётно, а первый знак -]. В каждой паре вклад в общую сумму будет +1. (Например, пара (124,125) -> -1+2 -4 +1-2 +5=-4+5=+1) Поэтому однозначные числа дадут вклад +5, трёхзначные +450, пятизначные +45000 и т.д. Если нечётнозначный блок стоит последним и неполон, то его вклад также легко рассчитать — если в нём 2n чисел, то это просто +n, а если 2n+1 число, то это просто +n+(вклад последнего).
Пусть блок чётный (2n-значные числа). Тогда из 9*10^(2n-1) чисел по 10^(2n-1) будут содержать 1,2,3,4...9 на первом месте, а на каждом из остальных ровно по 9*10^(2n-2) будут содержать каждую из цифр. Поэтому вклад будет 45*( -10^(2n-1) — (n-1)*9*10^(2n-2) + n*9*10^(2n-2) ) = -45*10^(2n-2). (первое слагаемое в скобке — вклад первых цифр, второе — вклад нечётных цифр, отличных от первой, третье — вклад чётных цифр)
Осталось понять, что делать с неполным чётным блоком. Там уже сократить вычисления нормально не получится, придётся по отдельности считать, какой вклад в сумме дают все цифры i на j-м месте. Знак зависит только от чётности j, а вот модуль — это i умножить на их количество. Количество считается за O(log(N)).