I've solved this problem using sqrt decomposition. but how can i solve it using segment tree?
Thanks in advance :)
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
I've solved this problem using sqrt decomposition. but how can i solve it using segment tree?
Thanks in advance :)
Name |
---|
You can solve this problem without sqrt decomposition and segment tree. See this 11088217 submission
[DELETED]
That solution uses the idea that since we're asking for all numbers x that have at least x occurences, and the maximum number of elements is 105, the maximum amount of such numbers is 446, because .
While it's not Mo's algorithm or dividing the queries into buckets, it's still based on the concept of square root.