Блог пользователя xeronix

Автор xeronix, 13 лет назад, По-английски
Is centre of minimum enclosing sphere the answer to this problem ??

If yes then considering x and y coordinates only, can't we find minimum enclosing circle's centre and then somehow search for required z coordinate because min_z <= z <= max_z .
min_z = min. z coordinate in given set of points
max_z = max. z_coordinate in given set of points


  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

13 лет назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится
Промазал с интерфесом :-(
13 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
It isn't true that centre of minimal enclosing sphere has x,y coordinates equal to the coordinates of centre of minimal enclosing circle of projections of points on OXY plane.

Example: you have right triangle (1, 0, 0)-(0, 0, 1)-(0, 0, -1). And you are proecting it on OXY (throwing out third z-coordinate).
Minimal enclosing circle of (1, 0)-(0, 0)-(0, 0) has centre (0.5, 0).
But minimal enclosing sphere of third points in space has centre (0, 0, 0), because it's centre of the hypotenuse. 0.5 != 0 :-(

If it was true, you could project points on OXY and discover x,y coordinates of sphere, then project points on OYZ and discover y,z coordinates, so there wasn't any need to search z :-)