№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Название |
---|
Consider solving the problem independently for each color. We can do this by considering all of the positions that are marked by a certain color (the total number of positions is N across all colors).
It is always optimal to take a contiguous subarray of positions in the position array for a color. With the first sample input as an example, the positions array for color 1 would look something like {1, 3, 4, 7, 8}. If we wanted to take positions 1, 3, and 7, it would clearly be inoptimal to not take 4 as we are already deleting between 3 and 7.
English Comment
55403403