I wonder if there's an easy way to solve this problem using suffix automaton. There's a linear solution for this problem using suffix tree (link to a much harder version of a problem).
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
I wonder if there's an easy way to solve this problem using suffix automaton. There's a linear solution for this problem using suffix tree (link to a much harder version of a problem).
Название |
---|
Yes, and very easily. For example, let's consider the following problem: How Many Substrings?. The solution is very concise:
and it's without any modification of SAu algorithm. Here
last
is the last SAu state (created while addingline[i]
into SAu),res
is the number of unique substrings of string's prefix,link
is the suffix link.Thanks. That's exactly what I was hoping to find.