Блог пользователя Tlatoani

Автор Tlatoani, 3 года назад, перевод, По-русски

Надеемся, вам понравился раунд! Подготовка данного раунда заняла много времени -- старейшей задачей в нем является H, которая первоначально была предложена в раунды, которые впоследствии стали Codeforces Round 655 (Div. 2) и Codeforces Global Round 10.

Разбор для E и коды программ для всех задач добавлены.

A - Ода ветру
B - Омкар и божественное дерево
C - Омкар и определение
D - Омкар и смысл жизни
E - Момент цветения
F - Защитник детских мечт
G - Омкар и путешествия во времени
H - Омкар и туры
I - Омкар и мозаика
  • Проголосовать: нравится
  • +349
  • Проголосовать: не нравится

»
3 года назад, # |
  Проголосовать: нравится +9 Проголосовать: не нравится

Thanks for the great contest and fast editorial!

»
3 года назад, # |
  Проголосовать: нравится +22 Проголосовать: не нравится

Thanks for the fun contest!

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +208 Проголосовать: не нравится

The bonus of D !

Asking $$$A=[1,1,\dots,k]$$$​​​​ in which $$$k=2,3,\dots $$$​​​​, when the first time get answer $$$0$$$​​​, there is $$$p_n=n-k+1$$$​​​ if this is the $$$k$$$​​​-th query. What's more, if the answer to $$$u$$$​​​-th query is $$$b_u$$$​​​, then $$$p_{b_u}=p_n+u$$$​​. Now we get the position of $$$b_n,b_{n}+1,\dots n$$$ and only make $$$n-p_n$$$ queries.

Then asking $$$a_i=n$$$ if $$$p_i$$$ is determined, $$$a_i=k$$$ if else, from $$$k=1$$$ to $$$k=p_n-1$$$. If the answer to $$$u$$$-th query is $$$c_u$$$, then $$$p_{c_u}=p_n-u$$$.

Now we get the position of all numbers and only make $$$n$$$ queries.

And here is my solution

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +28 Проголосовать: не нравится

    great solution! I used similar way to find A[n], but I performed another n — 1 queries to determine other elements.

  • »
    »
    3 года назад, # ^ |
    Rev. 2   Проголосовать: нравится -8 Проголосовать: не нравится

    The solution 1 of D can also be optimized to omit $$$n-1$$$ queries.

    You can record for each $$$j$$$, the index $$$prev_j$$$ such that $$$p_{prev_j}=p_j-1$$$.

    When you set $$$y\to next_x$$$, set $$$x\to prev_y$$$, and vice versa.

    You can ask like the solution 1, but since queries only find smaller index of the two equal $$$s_j$$$, you can visit $$$j$$$ from $$$n$$$ to $$$1$$$. If the $$$next_j$$$ is determined by previous queries, you can omit the query of the first type(i.e. a query with all $$$1$$$s except that $$$p_j=2$$$). If the $$$prev_j$$$ is determined by previous queries, you can omit the query of the second type(i.e. a query with all $$$2$$$s except that $$$p_j=1$$$).

    Since for each $$$x$$$ from $$$0$$$ to $$$n$$$, the relative position of $$$x$$$ and $$$x+1$$$only requires 1 query to determine(when $$$p_j=1$$$, we should also ask about $$$prev_j$$$(which shouldn't appear), we assume that there's an $$$0$$$ which is $$$prev_j$$$, and the same to the index j that $$$p_j=n$$$), you can solve the problem with $$$n+1$$$ queries.

    My solution

    (I only know a little English; sorry for that.)

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится -34 Проголосовать: не нравится
    if(tot>n+n){
    		cerr<<"fuck";
    	}
    

    Nice...

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Hello Codeforces! I'm having a problem when adding problems to favorites and that is that no more than five are added!!! ಥ‿ಥ I would like to have a selection of problems, which for my taste are interesting to solve, so I can give them a look in the future. Any comments about this?

Thank you very much in advance! (~ ̄³ ̄)~

»
3 года назад, # |
  Проголосовать: нравится +48 Проголосовать: не нравится
Spoiler

By the way, the girl is that "Hu Tao" in problem E.

»
3 года назад, # |
  Проголосовать: нравится -18 Проголосовать: не нравится

Really a tough contest.. waiting for rating to go down....

»
3 года назад, # |
  Проголосовать: нравится +29 Проголосовать: не нравится

Nice problems! E and F should've been swapped imo. E was so tedious to formulate and code. Think F would have far more solves if it were in place of E. Took an hour on E and missed F by a whisker cause of one dumb typo ~>_<~

»
3 года назад, # |
  Проголосовать: нравится +26 Проголосовать: не нравится

The editorial for problem D does not respect the requirement $$$1 \leq a_j \leq n$$$ on the queries. (But it is trivial to fix this.)

»
3 года назад, # |
  Проголосовать: нравится +13 Проголосовать: не нравится

I am sorry but in problem E the editorial does proves only the fact that if every vertex appears even number of times, then answer is 0.

How to prove that ANY spanning tree works if we wanna find out the minimum number of queries to be added? This is the hard part.

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +26 Проголосовать: не нравится
    A more rigorous proof for E
    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      I think you just proved what the editorial proved. I was asking for the proof of the second part: when the answer is NO, and we have to find the minimum number of queries to be added. why does dp in any spanning tree work?

      • »
        »
        »
        »
        3 года назад, # ^ |
          Проголосовать: нравится +14 Проголосовать: не нравится

        The editorial is indeed incomplete in the part when the answer is NO, but in my opinion it is much easier than when the answer is YES.

        When the answer is NO, we just need to add queries so that all $$$f_v$$$ are even. The minimum such number is the number of values of $$$v$$$ such that $$$f_v$$$ is odd, divided by 2.

        We need at least that many extra queries since each query added can change at most two $$$f_v$$$ values. On the other hand, we can achieve this number of queries by pairing up the odd $$$f_v$$$'s (there are an even number of them since the sum of all $$$f_v$$$ is even).

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +9 Проголосовать: не нравится

    Any (nonsimple) cycle in a tree visits every edge an even number of times.

    If every vertex is the endpoint of an even number of paths, the paths can be arranged into cycles: to form a cycle, take any path, say from $$$a_1$$$ to $$$a_2$$$. Then take any path from $$$a_2$$$, say to $$$a_3$$$. Repeat until $$$a_t = a_1$$$. This must happen, as the only vertices that an odd amount of paths start after the first $$$j - 1$$$ edges are $$$a_1$$$ and $$$a_j$$$.

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится -18 Проголосовать: не нравится

      But this is the proof for YES case. I was talking about how to prove when the answer is NO, that is OK to take any spanning tree.

      • »
        »
        »
        »
        3 года назад, # ^ |
          Проголосовать: нравится +5 Проголосовать: не нравится

        The spanning tree is only used for the YES case. Read the solution more carefully.

        • »
          »
          »
          »
          »
          3 года назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          Actually in my solution, I used spanning tree for my NO case also. I did dp on that tree. So I was confused.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can anyone help me with solution C 132264422

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    u only checked for indices which are "." but u should also check for "X" too a simple example is this XX XX your code will give YES for it but ans should be no as following will also produce same EN grid XX X.

»
3 года назад, # |
  Проголосовать: нравится +127 Проголосовать: не нравится

My approach to F was different, and allows for a trivial lower bound proof.

Fix the number of colours $$$c$$$ you will be using. For every node $$$i$$$, define the array $$$LEN[i]$$$ such that $$$LEN[i][t]$$$ is the length of the longest monocoloured path of colour $$$t$$$ from node $$$i$$$. In a valid solution, we have $$$0 \leq LEN[i][t] < k$$$.

Take any optimal solution and consider these arrays. Let $$$t$$$ be the colour of the edge from $$$i$$$ to $$$j$$$. Then $$$LEN[i][t] \geq LEN[j][t] + 1$$$. This immediately shows that we must have $$$LEN[i] \neq LEN[j]$$$ for all $$$i \neq j$$$. Since there are $$$k^c$$$ different arrays, any valid solution must thus have $$$n \leq k^c$$$.

Also, given that $$$n \leq k^c$$$, we can construct a solution by assigning the possible arrays in lexicographically decreasing order.

»
3 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Although I failed this contest, I really liked the originality of problem B !

»
3 года назад, # |
  Проголосовать: нравится +74 Проголосовать: не нравится

Great contest! For those who prefer video explanations, I explain solutions to all problems except I and G at the end of my screencast here.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

My first time to solve an interactive problem! Stuck at E and tried G but withdrew...

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

my solution to D is working in my device properly but when i submitted it showed TLE on permutation {1,2} anyone kindly help 132260554

»
3 года назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

Here are the video solutions to the first 4 problems. solutions

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +62 Проголосовать: не нравится

My feedback on A-G:

  • A: The idea is fine but I don't like that we have to print out the subset (I can understand the reason behind this though).
  • B: This feels like a hit or miss problem for me. I almost thought that we could ignore the tree condition and construct a line instead. Fortunately, I took my time and tried to use the special condition.
  • C: This seems a bit difficult for its position. I would rate this somewhere between A and B in a Div 1 round. Consider that we have 6 problems after this and only 135 min, I would prefer an easier one.
  • D: Nice problem that allows many approaches. Mine was also to find $$$p_n$$$ but in a different way from the one above.
  • E: This one feels oddly crafted for me. You have to think why it's okay to just keep a tree (I tried to prove it but I doubt everyone would do, because printing out the paths would be too difficult if it's not true). I would rather be given a tree and asked to print out the paths in the "NO" case.
  • F: I love how simple yet elegant the solution for this is. Props to the author for such a great problem.
  • G: Harder version of 1552F - Telepanting but the overall idea is quite similar. The strong sample tests definitely help, too. I wish I went for this instead of F in the contest. 27 ACs seem to be a problem position effect instead.

UPD: added G

»
3 года назад, # |
  Проголосовать: нравится +26 Проголосовать: не нравится

Another way to construct a coloring for F is to think about the indices $$$0$$$ to $$$n-1$$$ in base $$$k$$$. Color the edge from $$$a$$$ to $$$b$$$ by the position of the most significant digit that changes. There is no path of length $$$k$$$ with only one color as the most significant digit that changes can only increase $$$k-1$$$ times.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Wow, how beautiful the solution to F is!

»
3 года назад, # |
  Проголосовать: нравится -13 Проголосовать: не нравится

Thanks for the interesting problems and +114 rating!

»
3 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Can I asked for a solution in problem B if (m >= n)?

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    can think of m<2*n

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Can you show your idea :D?

      • »
        »
        »
        »
        3 года назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        actually when i wrote that comment i thought the wrong way but after thinking a lot i concluded that for m>=n there exists such an input for which solution is not possible ex: suppose n=m=6 consider the following 6 constraints {(1,2,6),(1,3,6),(1,4,6),(1,5,6),(1,6,2),(2,1,6)} here considering first 4 no node can be between 1 and 6 so u are forced to connect 1-6 if done this u cannot add 2 to either side as it will always violate the either of the last 2 constraints,,,,, may be there is a solution for some special cases for m>=n

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +9 Проголосовать: не нравится

    Here's a solution sketch for $$$m \leq n + 1$$$.

    m = n
    m=n+1

    It may be possible to push this idea a bit further, but it seems likely to get hairy fast.

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Thanks, I can understand your idea. When I first saw this problem, I was confused before reading its constraint.

»
3 года назад, # |
  Проголосовать: нравится +7 Проголосовать: не нравится

I'm curious about the special judge for problem B.How to check an output is valid or not quickly(I can only thought about a data structure which is O(n log^2 n))?

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +8 Проголосовать: не нравится

    Notice that $$$b$$$ lie on the simple path between nodes $$$a$$$ and $$$c$$$ if and only if $$$dist(a,b)+dist(b,c)=dist(a,c)$$$.

    So all you need is a method to get LCA of two nodes.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Thank you , Hutao , for this fantastic contest . The division degree is good.

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +16 Проголосовать: не нравится

In problem H,I have a different way on maintaining the information.

After off-line the queries,it requires us to find out the maximal toll on the road to the reachable cities with the maximum enjoyment value.And the maximum enjoyment could be saved on Link-Cut-tree with set maintaining the maximum value of each node subtree,while the maximal toll could be found at the same time.

Unfortunately,I would have thought that 3 seconds were enough for n log^2 n.It took me more an hour to get the program faster and faster.In the end,I control the size of each set no more than 3,because there is no edge cutting operation,with the time complexity O(n log n).

I have only solved A and H,and I have known I'm doing wrong.Now,I'm learning how to use binary search.

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +12 Проголосовать: не нравится

    3 seconds are indeed enough for O(n log^2 n).
    I just solved problem H (as practice), and I used DSU on tree to bruteforcely merge the cities with maximum enjoyment in two sets.
    The time complexity is O(n log^2 n) with a big constant from vector operations, and it runs surprisingly fast (<500ms).

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится +4 Проголосовать: не нравится

      With set,maybe LCT has a larger constant and the complexity is more than O(97 n log n)(Top-Tree's complexity).I'll use these data structures more carefully next time.

      And thanks for solving my puzzle.

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +31 Проголосовать: не нравится

A stupid $$$O((n+q) \log^2 (n+q))$$$ solution for H:

First find out the answer to the first question using dsu. Then do centroid decomposition to find out the second answer. Let $$$mx_u$$$ and $$$mi_u$$$ respectively be the maximum toll and minimum capacity from $$$u$$$ to centroid, and $$$bel_u$$$ be the subtree within which $$$u$$$ lies. Then, we just have to find out the following:

  • $$$bel_v\ne bel_u$$$.
  • $$$\min(mi_u,mi_v)\ge V$$$. ($$$V$$$ is the number of vehicles in the query)
  • $$$a_v=ans1$$$. ($$$ans1$$$ is the answer to the first question)
  • among those $$$v$$$, the maximum value of $$$\max(mx_u,mx_v)$$$.

By maintaining a segtree independently for each $$$a_v$$$, the whole task can be solved in $$$O((n+q) \log^2 (n+q))$$$. (without any observation)

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Why is this giving TLE on 2nd test case whereas it runs just fine on other IDE

my solution

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to solve B? if m may not be less than n

»
3 года назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

I really like the way D was made. It was easy but little trick at the same time. Thanks for this

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In problem C, I can not understand the meaning of "This includes the cell itself, so all filled in cells are not exitable".

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    I got WA cause' I misinterpreted this line, for a single column subgrid XXXX the output was supposed to be Yes but I was printing No.

    • »
      »
      »
      3 года назад, # ^ |
      Rev. 2   Проголосовать: нравится -9 Проголосовать: не нравится

      I hope the authors would make the problem statement more easier to understand next time. For subgrid 2x2: [.X] [XX] I printed out YES, but the answer is NO

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

The thicken words for B is really useful! :)

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I think the proof of F doesn't seem so right....How can the necessity be proved like that?

»
3 года назад, # |
Rev. 4   Проголосовать: нравится 0 Проголосовать: не нравится

[solved]

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

The editorial of G is very long and I had to be patient enough to read it carefully. However, I didn't understand the sequence "Specifically, we can represent a valid set v as the set u of intervals that aren't implied to be in v by any other element of v" after reading it again, again, again, again, again and again. Though I asked many other people, I still found it hard to realize what it exactly mean... So is there any people who is good at English explain about it? Thanks. Sorry for my poor English:(

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +33 Проголосовать: не нравится

    It was described earlier that if you have segments $$$[a_i, b_i]$$$ and $$$[a_j, b_j]$$$ such that $$$a_i < a_j$$$ and $$$b_i < b_j$$$ then the presence of $$$[a_j, b_j]$$$ in set $$$v$$$ "implies" the presence of $$$[a_i, b_i]$$$ in set $$$v$$$.

    That's why, if $$$v$$$ has both $$$[a_i, b_i]$$$ and $$$[a_j, b_j]$$$ then you say that $$$u$$$ will contain only $$$[a_j, b_j]$$$. In other words, $$$u$$$ will contain only $$$[a_i, b_i]$$$ from $$$v$$$ that don't have any other $$$[a_j, b_j]$$$ in $$$v$$$ with $$$a_i < a_j$$$ and $$$b_i < b_j$$$.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to solve B if number of restrictions is not necessarily less than n?

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
We can also solve the problem D using the binary search. We can first try to find the value of pn i.e. the last element of the permutation. We can query the maximum diff such that p[n] + diff would exist twice in the array. For example lets say p[n] is 5 and n is 7 then diff would come out to be 3 because 5 + 3 will occur twice in the array (5 + 3 and 7 + 1) if we chose our array a to be [1, 1, 1, 1, 1, 1, diff] and 3 is greatest amongst all such diff values. Then pn can be easily computed as n - diff + 1 i.e. 5. It would require aroung log n queries to find the value of diff.

Then we can do the classic n - 1 queries to find the remaining n - 1 elements. 

Total queries: log n + n - 1.
»
3 года назад, # |
Rev. 3   Проголосовать: нравится +8 Проголосовать: не нравится

Another way to think about the tree reduction for E. Thanks to SecondThread for the helpful explanation.

Suppose we have a cycle $$$C = c_1 c_2 \ldots c_m c_1$$$ and we remove an edge $$$e = (c_k,c_{k+1})$$$ from the graph. Now for each path that originally contained $$$e,$$$ say $$$P = v_1 v_2 \ldots v_i (c_k c_{k+1}) v_{i+3} \ldots v_j,$$$ we now remove $$$c_k c_{k+1}$$$ and reroute to the rest of the cycle, ie. the new path is $$$v_1 v_2 \ldots v_i (c_{k} c_{k-1} \ldots c_1 c_m \ldots c_{k+1}) v_{i+3}\ldots v_j.$$$ If we do this for every original path that contained $$$e,$$$ which is an even number of them* (see the note at the bottom), we see that the edge weight of $$$e$$$ goes to $$$0$$$ (even), and we add $$$e$$$'s original weight (an even number) to each of the other edges in $$$C \setminus e.$$$ Since all weights were originally even, the weights after rerouting all paths that originally contained $$$e$$$ are also all even. We can keep removing edges this way until we are left with a spanning tree.

However, the new path may no longer be simple (ie. it will repeat edges if $$$P$$$ contained any edges in $$$C \setminus e.$$$) But it turns out that having non-simple paths is fine at the end when we are left with a tree. Why is this true? Intuitively if we have a non-simple path in a tree, if we go down and visit a child and then come back up, we could just delete this because it cancels and the parity isn't changed, and we can turn it into a simple path.

Formally

Thus we have shown: If there is a valid solution with simple paths on $$$G,$$$ there is a valid solution using (possibly non-simple) paths on any spanning tree $$$T$$$ of $$$G,$$$ and further, any solution on a tree with non-simple paths is equivalent to a solution using the unique simple paths of $$$T,$$$ and the proof is complete.

$$$ $$$
Note
»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

F is amazing! Spent a whole day convinced that the answer was $$$\lceil \frac{n}{k} \rceil$$$ and stumbled upon the correct solution after repeatedly failing to prove it.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Simpler solution for problem G:

Firstly, like in editorial, we consider each task $$$p$$$ to be an interval $$$[a_p, b_p]$$$ on the number line. Now, passage of time and time travels can be visualized as okabe moving forward by 1 step and teleporting backwards on this number line.

Observation 1: Whenever okabe reaches some point $$$x$$$ on this number line, such that $$$b_p = x$$$ for some $$$p$$$, then at that moment of time, any task $$$q$$$ with $$$b_q < b_p$$$ will be completed. (easy to prove by contradiction, as existence of incomplete task $$$q$$$ with $$$b_q < b_p$$$ would imply we teleported forward at some point of time).

Now, let us consider some incomplete task $$$p$$$. When okabe reaches point $$$b_p$$$, he will teleport backwards, then travel for some time (with some intermediate teleports), and then finally reach $$$b_p$$$ again.

Let us define $$$dp_p$$$ to be the number of teleports which okabe needs to perform before first reaching $$$b_p$$$ again, after teleporting back from $$$b_p$$$ when $$$p$$$ was incomplete.

Observation 2: $$$dp_p$$$ (ie. the number of teleports to reach $$$b_p$$$ again), does not depend on the completion status of any other task. This is true because only some task $$$q$$$ with $$$b_q < b_p$$$ can affect $$$dp_p$$$ and any such task is always completed at any instance of us teleporting back from $$$b_p$$$ by observation 1. It does not matter whether any task $$$q$$$ with $$$b_q > b_p$$$ is completed or not, because we will reach $$$b_p$$$ before reaching $$$b_q$$$.

Now how do we calculate $$$dp_p$$$ for some $$$p$$$? Firstly, notice that we never go behind $$$a_p$$$ before reaching $$$b_p$$$ first. This is easy to show , because going behind $$$a_p$$$ would imply that there exists some incomplete task $$$q$$$ for which $$$a_q < a_p$$$ and $$$b_q > b_p$$$. But this is a contradiction to the fact that all such tasks were complete before teleporting back from $$$b_p$$$, and teleporting behind from $$$b_p$$$ only ever resets completion status of tasks $$$r$$$ with $$$a_p < a_r$$$ and $$$b_r < b_p$$$.

So this means that only tasks $$$q$$$ with $$$a_q > a_p$$$ and $$$b_q < b_q$$$ contributes to $$$dp_p$$$. As it turns out, $$$dp_p$$$ is simply $$$\sum{dp_q} \quad \forall q | (a_q > a_p, b_q < b_p)$$$.

Why is this valid? It's because this corresponds to only considering each task $$$q$$$'s contribution to be the number of intermediate teleports we make to reach $$$b_q$$$ after first teleporting back from $$$b_q$$$ (which is nothing but $$$dp_q$$$), and this is clearly a valid and complete formulation. $$$dp$$$ value for all tasks can be computed easily in $$$O(n\log{n})$$$ by using any point update range sum query structure.

Now, for the final part of the problem, we need to figure out the least time by which all the tasks in the given set of tasks $$$S$$$ are completed.

Let us define $$$opt_p$$$ to be the task $$$q$$$ with the maximum $$$b_q | (a_p < a_q, b_q < b_p)$$$.

Let $$$x$$$ be the task with the maximum value of $$$b_x \quad \forall x \in S$$$.
Now, consider why the answer is not simply $$$\sum{dp_q} \quad \forall q | (b_q \leq b_x)$$$

Notice that for task $$$x$$$, after we teleport back from $$$b_x$$$, do some intermediate teleports, and reach a state wherein $$$opt_x$$$ is completed, we do not need to travel forward anymore (ie. we do not need to reach $$$b_p$$$ again). So basically, if we consider the answer to be $$$\sum{dp_q} \quad \forall q | (b_q \leq b_x)$$$, then we need to subtract $$$dp_r$$$ from the answer for all $$$r$$$ such that $$$a_r > a_p, b_r > b_{opt_p}$$$. Now, similarly for $$$opt_p$$$, we do not need to reach $$$b_{opt_p}$$$ again, so we do not need to travel anymore after teleporting back once from $$$b_{opt_p}$$$, and $$$opt_{opt_p}$$$ getting completed. This is to be done recursively till we reach a task which has no task's interval lying within its own.

As $$${opt_p}^{x + 1} < {opt_p}^{x}$$$, we can simply use two pointers to do this final recursive procedure in $$$O(n)$$$ at the end.

Implementation: link