A. Strange Functions
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Let's define a function $$$f(x)$$$ ($$$x$$$ is a positive integer) as follows: write all digits of the decimal representation of $$$x$$$ backwards, then get rid of the leading zeroes. For example, $$$f(321) = 123$$$, $$$f(120) = 21$$$, $$$f(1000000) = 1$$$, $$$f(111) = 111$$$.

Let's define another function $$$g(x) = \dfrac{x}{f(f(x))}$$$ ($$$x$$$ is a positive integer as well).

Your task is the following: for the given positive integer $$$n$$$, calculate the number of different values of $$$g(x)$$$ among all numbers $$$x$$$ such that $$$1 \le x \le n$$$.

Input

The first line contains one integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases.

Each test case consists of one line containing one integer $$$n$$$ ($$$1 \le n < 10^{100}$$$). This integer is given without leading zeroes.

Output

For each test case, print one integer — the number of different values of the function $$$g(x)$$$, if $$$x$$$ can be any integer from $$$[1, n]$$$.

Example
Input
5
4
37
998244353
1000000007
12345678901337426966631415
Output
1
2
9
10
26
Note

Explanations for the two first test cases of the example:

  1. if $$$n = 4$$$, then for every integer $$$x$$$ such that $$$1 \le x \le n$$$, $$$\dfrac{x}{f(f(x))} = 1$$$;
  2. if $$$n = 37$$$, then for some integers $$$x$$$ such that $$$1 \le x \le n$$$, $$$\dfrac{x}{f(f(x))} = 1$$$ (for example, if $$$x = 23$$$, $$$f(f(x)) = 23$$$,$$$\dfrac{x}{f(f(x))} = 1$$$); and for other values of $$$x$$$, $$$\dfrac{x}{f(f(x))} = 10$$$ (for example, if $$$x = 30$$$, $$$f(f(x)) = 3$$$, $$$\dfrac{x}{f(f(x))} = 10$$$). So, there are two different values of $$$g(x)$$$.