Технокубок 2016 - Отборочный Раунд 2 |
---|
Закончено |
Память компьютера состоит из n ячеек, которые выстроены в ряд. Пронумеруем ячейки от 1 до n слева направо. Про каждую ячейку известно, свободна она или принадлежит какому-либо процессу (в таком случае известен процесс, которому она принадлежит).
Для каждого процесса известно, что принадлежащие ему ячейки занимают в памяти непрерывный участок. С помощью операций вида «переписать данные из занятой ячейки в свободную, а занятую теперь считать свободной» требуется расположить все принадлежащие процессам ячейки в начале памяти компьютера. Другими словами, любая свободная ячейка должна располагаться правее (иметь больший номер) любой занятой.
Вам необходимо найти минимальное количество операций переписывания данных из одной ячейки в другую, с помощью которых можно достичь описанных условий. Допустимо, что относительный порядок ячеек в памяти для каждого из процессов изменится после дефрагментации, но относительный порядок самих процессов должен остаться без изменений. Это значит, что если все ячейки, принадлежащие процессу i, находились в памяти раньше всех ячеек процесса j, то и после перемещений это условие должно выполняться.
Считайте, что номера всех процессов уникальны, хотя бы одна ячейка памяти занята каким-либо процессом.
В первой строке входных данных записано число n (1 ≤ n ≤ 200 000) — количество ячеек в памяти компьютера.
Во второй строке входных данных следуют n целых чисел a1, a2, ..., an (1 ≤ ai ≤ n), где ai равно либо 0 (это означает, что i-я ячейка памяти свободна), либо номеру процесса, которому принадлежит i-я ячейка памяти. Гарантируется, что хотя бы одно значение ai не равно 0.
Процессы пронумерованы целыми числами от 1 до n в произвольном порядке. При этом процессы не обязательно пронумерованы последовательными числами.
Выведите одно целое число — минимальное количество операций, которое нужно сделать для дефрагментации памяти.
4
0 2 2 1
2
8
0 8 8 8 0 4 4 2
4
В первом тестовом примере достаточно двух операций:
Название |
---|