Suppose a > 0, b > 0.
Find a time $$$t_0$$$ such that the function $$$f(t) = a * t - b - log(log(x))$$$ is positive(>= 0) for $$$t >= t_0$$$
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 165 |
2 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | adamant | 160 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
Another Math problem
Suppose a > 0, b > 0.
Find a time $$$t_0$$$ such that the function $$$f(t) = a * t - b - log(log(x))$$$ is positive(>= 0) for $$$t >= t_0$$$
Rev. | Язык | Кто | Когда | Δ | Комментарий | |
---|---|---|---|---|---|---|
en2 | __MOUGOUPAN_22 | 2023-01-27 02:06:03 | 2 | Tiny change: '- log(log(x))$ is pos' -> '- log(log(t))$ is pos' | ||
en1 | __MOUGOUPAN_22 | 2023-01-27 01:40:19 | 151 | Initial revision (published) |
Название |
---|