1

Правка en23, от bfsof123, 2024-05-31 12:57:17

In this blog we prove a Ramanujan-type identity:

$$$\sum\limits_{n_1 \in \mathbb{Z}}(-1)^{n_1}\sum\limits_{(n_2, n_3) \in \mathbb{Z}^2}\frac{1}{\sqrt{n_1^2 + (n_2+0.5)^2+(n_3+0.5)^2}\sinh{(\pi\sqrt{n_1^2 + (n_2+0.5)^2+(n_3+0.5)^2})}} = 1$$$. (1)

Magic code

First, we consider a 4D lattice sum:

$$$U(n_1, n_2, n_3, n_4) := \sum\limits_{(n_1, n_2, n_3, n_4) \in \mathbb{Z}^4} \frac{(-1)^{n_1+n_4}}{n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2 + n_4^2}$$$. We will show later that $$$U(n_1, n_2, n_3, n_4)$$$ equals to $$$\pi$$$ (code shown below).

Pi code

For $$$\lambda > 0$$$, $$$\int_{0}^\infty e^{-\lambda x}dx = \frac{1}{\lambda}$$$, therefore $$$S(n_1, n_2, n_3, n_4) = \sum\limits_{(n_1, n_2, n_3, n_4) \in \mathbb{Z}^4} \int_{0}^\infty (-1)^{n_1+n_4} \exp((-n_1^2-(n_2+0.5)^2-(n_3+0.5)^2-n_4^2)x)dx$$$. (2)

By the Poisson summation formula of the theta function (see this),

$$$\sum\limits_{n \in \mathbb{Z}}(-1)^n \exp(-n^2 x) = \sqrt{\frac{\pi}{x}} \sum\limits_{n \in \mathbb{Z}}(-1)^n\exp(\frac{-(n+0.5)^2\pi^2}{x})$$$ (3)

By combining (2) and (3), $$$U$$$ can be written as a Mellin-transform-type integral:

$$$U(n_1, n_2, n_3, n_4) = \sum\limits_{(n_1, n_2, n_3, n_4) \in \mathbb{Z}^4} \sqrt{\pi}\int_{0}^\infty (-1)^{n_1} x^{-0.5} \exp(-(n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2)x - \frac{(n_4+0.5)^2\pi^2}{x})dx$$$. (4)

We then use a famous integral representation of the Modified Bessel functions of the second kind (i.e., $$$K$$$):

$$$M_s[\exp(-ax-\frac{b}{x})] := \int_{0}^\infty x^{s-1}\exp(-ax-\frac{b}{x})dx = 2(\frac{b}{a})^{\frac{s}{2}}K_s(2\sqrt{ab})$$$. (5)

In (5), $$$M_s$$$ denotes the Mellin transform with parameter $$$s$$$. And we note that when $$$s=0.5$$$, $$$K_{0.5}(z)$$$ has a closed-form: $$$K_{0.5}(z) = \sqrt\frac{\pi}{2} \frac{e^{-z}}{\sqrt{z}}$$$.

Then, $$$\int_{0}^\infty x^{-0.5}\exp(-ax-\frac{b}{x})dx = 2(\frac{b}{a})^{0.25} K_{0.5}(2\sqrt{ab}) = 2(\frac{b}{a})^{0.25}\sqrt{\frac{\pi}{2}}\frac{\exp(-2\sqrt{ab})}{\sqrt{2}(ab)^{0.25}} = \sqrt{\frac{\pi}{a}}\exp(-2\sqrt{ab})$$$. (6)

We set $$$a = n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2$$$ and $$$b = (n_4+0.5)^2\pi^2$$$, and

$$$U(n_1, n_2, n_3, n_4) = \sum\limits_{(n_1, n_2, n_3) \in \mathbb{Z}^3} (-1)^{n_1}\frac{\pi}{\sqrt{n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2}}\sum\limits_{n_4} \exp(-\pi |2n_4+1| \sqrt{n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2})$$$. (7)

$$$\sum\limits_{n_4} \exp(-\pi |2n_4+1| \sqrt{n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2})$$$ is symmetric about $$$n_4 = -0.5$$$. $$$n_4 = 0,1,2,...,\infty$$$ and $$$n_4 = -1,-2,...,-\infty$$$, form two identical geometric series with initial data $$$a_1 = \exp(-\pi \sqrt{n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2})$$$ and common ratio $$$q = \exp(-2\pi \sqrt{n_1^2 + (n_2+0.5)^2 + (n_3+0.5)^2})$$$. Each one contributes $$$\frac{a_1}{1-q}$$$ and they contribute $$$\frac{2a_1}{1-q} = \frac{1}{\sinh{(\pi\sqrt{n_1^2 + (n_2+0.5)^2+(n_3+0.5)^2})}}$$$, amazing!

Therefore, $$$U(n_1, n_2, n_3, n_4) = \pi\sum\limits_{n_1 \in \mathbb{Z}}(-1)^{n_1}\sum\limits_{(n_2, n_3) \in \mathbb{Z}^2}\frac{1}{\sqrt{n_1^2 + (n_2+0.5)^2+(n_3+0.5)^2}\sinh{(\pi\sqrt{n_1^2 + (n_2+0.5)^2+(n_3+0.5)^2})}}$$$, therefore it is sufficient to show that $$$U = \pi$$$. Now we check the Zucker1974 paper ["Exact results for some lattice sums in 2, 4, 6 and 8 dimensions"]("Exact results for some lattice sums in 2, 4, 6 and 8 dimensions")

Теги math, modular form, ramanujan, lattice sum, sinh, codeforces

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en52 Английский bfsof123 2024-06-18 14:39:37 16
en51 Английский bfsof123 2024-06-06 20:29:14 96
en50 Английский bfsof123 2024-06-03 16:56:18 96
en49 Английский bfsof123 2024-06-02 18:04:42 9 Tiny change: 'n_formula), and the' -> 'n_formula) (Eq.(3)), and the'
en48 Английский bfsof123 2024-05-31 18:09:13 114
en47 Английский bfsof123 2024-05-31 18:03:22 49
en46 Английский bfsof123 2024-05-31 18:02:06 8
en45 Английский bfsof123 2024-05-31 17:52:52 227
en44 Английский bfsof123 2024-05-31 17:41:17 59
en43 Английский bfsof123 2024-05-31 17:35:18 14 Tiny change: '.5)^2})}}$, therefore it is suffi' -> '.5)^2})}}$. It is suffi'
en42 Английский bfsof123 2024-05-31 17:33:31 106
en41 Английский bfsof123 2024-05-31 17:30:25 2 Tiny change: 'm\limits_{0}^\infty ' -> 'm\limits_{n=0}^\infty '
en40 Английский bfsof123 2024-05-31 16:54:54 15 Tiny change: 'the other one comes fro' -> 'the other $\sqrt{\pi}$ comes fro'
en39 Английский bfsof123 2024-05-31 16:17:58 544
en38 Английский bfsof123 2024-05-31 13:48:12 6 Tiny change: 'mathbb{Z}}(-1)^n\exp(\frac' -> 'mathbb{Z}}\exp(\frac'
en37 Английский bfsof123 2024-05-31 13:44:21 49
en36 Английский bfsof123 2024-05-31 13:34:07 13
en35 Английский bfsof123 2024-05-31 13:33:26 30
en34 Английский bfsof123 2024-05-31 13:28:38 441
en33 Английский bfsof123 2024-05-31 13:21:55 1 Tiny change: '3/011/pdf)` with a [s' -> '3/011/pdf) with a [s' (published)
en32 Английский bfsof123 2024-05-31 13:21:05 6 Tiny change: 'h initial data $a_1 := \' -> 'h initial term $a_1 := \' (saved to drafts)
en31 Английский bfsof123 2024-05-31 13:10:42 0 (published)
en30 Английский bfsof123 2024-05-31 13:10:04 26
en29 Английский bfsof123 2024-05-31 13:08:57 5
en28 Английский bfsof123 2024-05-31 13:08:27 490
en27 Английский bfsof123 2024-05-31 13:01:51 1 Tiny change: '=sharing) `[Exact res' -> '=sharing) [Exact res'
en26 Английский bfsof123 2024-05-31 13:00:02 60
en25 Английский bfsof123 2024-05-31 12:59:14 78
en24 Английский bfsof123 2024-05-31 12:58:02 73
en23 Английский bfsof123 2024-05-31 12:57:17 552
en22 Английский bfsof123 2024-05-31 12:51:22 515
en21 Английский bfsof123 2024-05-31 12:46:06 78
en20 Английский bfsof123 2024-05-31 12:45:00 82
en19 Английский bfsof123 2024-05-31 12:43:17 144
en18 Английский bfsof123 2024-05-31 12:38:46 63
en17 Английский bfsof123 2024-05-31 12:37:10 41
en16 Английский bfsof123 2024-05-31 12:36:12 192
en15 Английский bfsof123 2024-05-31 12:33:24 303
en14 Английский bfsof123 2024-05-31 12:28:59 247
en13 Английский bfsof123 2024-05-31 12:26:10 359
en12 Английский bfsof123 2024-05-31 12:24:43 495
en11 Английский bfsof123 2024-05-31 12:19:18 244
en10 Английский bfsof123 2024-05-31 12:15:10 684
en9 Английский bfsof123 2024-05-31 12:13:47 50
en8 Английский bfsof123 2024-05-31 12:12:42 216
en7 Английский bfsof123 2024-05-31 12:08:27 1 Tiny change: '2 + n_4^2}\n\n' -> '2 + n_4^2}$\n\n'
en6 Английский bfsof123 2024-05-31 12:08:17 213
en5 Английский bfsof123 2024-05-31 12:04:54 7
en4 Английский bfsof123 2024-05-31 12:04:10 47
en3 Английский bfsof123 2024-05-31 12:02:56 39
en2 Английский bfsof123 2024-05-31 12:01:41 150
en1 Английский bfsof123 2024-05-31 11:59:11 2 Initial revision (saved to drafts)