Given k alphabets and a length of n, find how many unique strings can be formed using these k alphabets of length n. Two strings are considered same if one can be obtained from another through rotation or through reversing.
# | User | Rating |
---|---|---|
1 | jiangly | 3977 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3483 |
8 | hos.lyric | 3381 |
9 | gamegame | 3374 |
10 | heuristica | 3358 |
# | User | Contrib. |
---|---|---|
1 | cry | 170 |
2 | -is-this-fft- | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 160 |
5 | djm03178 | 157 |
5 | Dominater069 | 157 |
7 | adamant | 154 |
8 | luogu_official | 152 |
8 | awoo | 152 |
10 | TheScrasse | 147 |
Burnside's Lemma Problem
Given k alphabets and a length of n, find how many unique strings can be formed using these k alphabets of length n. Two strings are considered same if one can be obtained from another through rotation or through reversing.
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en2 | maqsud13101033 | 2017-03-14 02:03:35 | 8 | Tiny change: 'ined from through r' -> 'ined from another through r' | ||
en1 | maqsud13101033 | 2017-03-14 01:59:29 | 239 | Initial revision (published) |
Name |
---|