You're given $n$ integers $a_1,a_2,\dots,a_n$, you need to count the number of ways to choose some of them (no duplicate) to make the sum equal to $S$,. Print the answer in modulo $10^9+7$. How to solve this problem in polynomial time?
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en3 | rlajkalspowq | 2020-04-01 06:00:51 | 197 | |||
en2 | rlajkalspowq | 2019-12-06 17:02:56 | 19 | Tiny change: 'ual to $S$, in modulo' -> 'ual to $S$. Print the answer in modulo' | ||
en1 | rlajkalspowq | 2019-12-06 17:01:08 | 246 | Initial revision (published) |
Name |
---|