A quite easy binary-search problem
Since $$$n \le 10^5$$$, the time complexity of the soulution should be either $$$O(n)$$$ or $$$O(n\cdot log_2n)$$$. That's where binary-search come in handy.
First, we should enumerate the starting point $$$i$$$ (the serial number of the book we read first)
For every $$$i$$$, there is an ending point $$$j$$$ which is the number of the last book we read.
Then, we use binary-search to find $$$j$$$ for every $$$i$$$. We can use Prefix Sum to quickly find the sum of a section
#include<cstdio>
#include<iostream>
using namespace std;
const int Maxn=100000+10,inf=0x3f3f3f3f;
int a[Maxn],s[Maxn];
int n,m,ans;
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0' && ch<='9')s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return s*w;
}
int main()
{
// freopen("in.txt","r",stdin);
n=read(),m=read();
for(int i=1;i<=n;++i)
a[i]=read(),s[i]=s[i-1]+a[i];
for(int i=1;i<=n;++i)
{
if(a[i]>m)continue;
int l=i,r=n; // find j
while(l<r)
{
int mid=(l+r)>>1;
mid++;
if(s[mid]-s[i-1]<=m)l=mid;
else r=mid-1;
}
ans=max(ans,l-i+1); // update the answer
}
printf("%d\n",ans);
return 0;
}