you have given N. you need to find out C(n,1*1)+C(n,2*2)+C(n,3*3)+c(n,4*4) + .....
Here c(n,r) = n!/((n-r)!*(r)!)
one way is find C(n,i*i) for all i between 1 <= i <= sqrt(n)
. Is there exist any efficient solution than this ??
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3831 |
3 | Radewoosh | 3646 |
4 | jqdai0815 | 3620 |
4 | Benq | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | gamegame | 3386 |
10 | ksun48 | 3373 |
# | User | Contrib. |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 160 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
Is there any efficient way to find out this ?
you have given N. you need to find out C(n,1*1)+C(n,2*2)+C(n,3*3)+c(n,4*4) + .....
Here c(n,r) = n!/((n-r)!*(r)!)
one way is find C(n,i*i) for all i between 1 <= i <= sqrt(n)
. Is there exist any efficient solution than this ??
Name |
---|