Блог пользователя tokitsukaze

Автор tokitsukaze, 3 года назад, По-английски

1678A - Tokitsukaze and All Zero Sequence

Idea: tokitsukaze
Prepare: tokitsukaze

Tutorial
Solution
Feedback

1678B1 - Tokitsukaze and Good 01-String (easy version) and 1678B2 - Tokitsukaze and Good 01-String (hard version)

Idea: qsmcgogo-B1, 74TrAkToR-B2
Prepare: tokitsukaze

Tutorial(greedy)
Tutorial(DP)
Solution(greedy)
Solution(DP)
Feedback-B1
Feedback-B2

1677A - Tokitsukaze and Strange Inequality

Idea: tokitsukaze
Prepare: tokitsukaze

Tutorial
Solution
Feedback

1677B - Tokitsukaze and Meeting

Idea: funer
Prepare: tokitsukaze, funer

Tutorial
Solution
Feedback

1677C - Tokitsukaze and Two Colorful Tapes

Idea: qsmcgogo, winterzz1
Prepare: winterzz1

Tutorial
Solution
Feedback

1677D - Tokitsukaze and Permutations

Idea: dark_light, FreshP_0325
Prepare: dark_light

Tutorial
Solution
Feedback

1677E - Tokitsukaze and Beautiful Subsegments

Idea: Frank_DD
Prepare: Frank_DD

Tutorial
Solution
Feedback

1677F - Tokitsukaze and Gems

Idea: dark_light
Prepare: dark_light

Tutorial
Solution
Feedback
Разбор задач Codeforces Round 789 (Div. 1)
Разбор задач Codeforces Round 789 (Div. 2)
  • Проголосовать: нравится
  • +115
  • Проголосовать: не нравится

»
3 года назад, # |
  Проголосовать: нравится +9 Проголосовать: не нравится

Thanks for the fast editorial! <3

»
3 года назад, # |
  Проголосовать: нравится -13 Проголосовать: не нравится

-- Excuse me, what is the worst problem did you solved ever? -- Cf #789 B2. -- (surprising)

»
3 года назад, # |
  Проголосовать: нравится -10 Проголосовать: не нравится

in div1D I thought that we choose k indices where we swap $$$p_i$$$ and $$$p_{i+1}$$$ (((

»
3 года назад, # |
  Проголосовать: нравится +14 Проголосовать: не нравится

Certainly not the most comfortable round for Div2, but I liked problem C. Thanks for a great editorial btw.

»
3 года назад, # |
  Проголосовать: нравится +64 Проголосовать: не нравится

Obligatory to say this, since many people are talking about it:

Div1A in $$$\mathcal O(n^2 \log n)$$$ (with a BIT/Fenwick Tree) fits within the time limit, even though I think $$$n \leq 5000$$$ was chosen to specifically cut out these solutions.

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +126 Проголосовать: не нравится

Actually problem F can be solved when $$$k \leq 10^6$$$, my solution has complexity $$$O(k\log k + n\log^2 n)$$$.

Our goal is to compute the coefficient of some polynomial $$$S(n)$$$ satisfying

$$$ p^nS(n)-S(0) = \sum_{i=0}^{n-1} p^i i^k, $$$

We have

$$$ p^{n+1} S(n+1) - p^n S(n) = p^n n^k. $$$

Therefore we have

$$$ pS(n+1) - S(n) = n^k, $$$

we write $$$S(x+1) = \mathrm{e}^{\mathrm D} S(x)$$$ formally, here $$$\mathrm D$$$ is the differential operator, then we have

$$$ (p \mathrm{e}^{\mathrm D} - 1) S(x) = x^k, $$$

thus

$$$ S(x) = \frac{1}{p \mathrm{e}^D - 1} x^k, $$$

we only need to compute the multiplicative inverse of $$$p\mathrm{e}^x - 1$$$, which can be done in $$$O(k\log k)$$$.

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +80 Проголосовать: не нравится

    Here's an alternative phrasing of this concept, which inlines the differential operator a little bit.

    Fix a polynomial $$$A(x) = a_0 + a_1 x^1 + a_2 x^2 + \cdots + a_k x^k$$$. Now, let $$$t$$$ be a formal variable, and note that for any $$$n$$$, $$$e^{nt} = \sum_{i \ge 0} \frac{1}{i!} n^i t^i$$$. In particular, this contains all powers of $$$n$$$, so we multiply this by a polynomial to get linear combinations of powers of $$$n$$$ (i.e. polynomials). In particular,

    $$$ A(n) = [t^k] \left((k! a_k t^0 + (k-1)! a_{k-1} t^1 + \cdots + 0! a_0 t^k) e^{nt} \right)$$$

    Where $$$[t^k]$$$ denotes taking the coefficient of $$$t^k$$$. Let $$$\hat{A}(t) = k! a_k t^0 + (k-1)! a_{k-1} t^1 + \cdots + 0! a_0 t^k$$$, so that $$$A(n) = [t^k] \hat{A}(t) e^{nt}$$$.

    Now, consider the sum $$$\sum_{i=0}^{n-1} p^i A(i)$$$. We can use the above form to get

    $$$ \sum_{i=0}^{n-1} p^i A(i) = \sum_{i=0}^{n-1} p^i [t^k] \hat{A}(t) e^{it} = [t^k] \hat{A}(t) \sum_{i=0}^{n-1} p^i e^{it}$$$

    (This is valid because $$$[t^k]$$$ is a linear operator.) Note that $$$\sum_{i=0}^{n-1} p^i e^{it}$$$ is a geometric sum! Thus, we get

    $$$ \sum_{i=0}^{n-1} p^i A(i) = [t^k] \hat{A}(t) \sum_{i=0}^{n-1} p^i e^{it} = [t^k] \hat{A}(t) \frac{p^n e^{nt} - 1}{p e^{t} - 1}$$$

    We can split this term into

    $$$ \sum_{i=0}^{n-1} p^i A(i) = p^n \left([t^k] \frac{\hat{A}(t)}{p e^t - 1} e^{nt} \right) - \left([t^k] \frac{\hat{A}(t)}{p e^t - 1}\right)$$$

    Note that this only depends on the first $$$k+1$$$ coefficients of $$$\hat{A}(t) / (pe^{t} - 1)$$$, and the left hand term can be viewed as a different polynomial evaluated at $$$n$$$. The rest of the solution is the same.

    One final note: if $$$p = 1$$$, then $$$e^t - 1$$$ does not have a generating function inverse, as it has constant term $$$0$$$. In this case, we can instead use

    $$$[t^k] \hat{A}(t) \frac{e^{nt} - 1}{e^t - 1} = [t^{k+1}] \hat{A}(t) \frac{e^{nt} - 1}{(e^t - 1)/t}$$$

    since $(e^t-1)/t$ has nonzero constant term. The generating function $$$((e^t-1)/t)^{-1}$$$ is thus the key thing to compute to find sums of powers; this is in fact the EGF of the Bernoulli numbers.

»
3 года назад, # |
  Проголосовать: нравится -9 Проголосовать: не нравится

ayy fast editorial :)

»
3 года назад, # |
  Проголосовать: нравится +12 Проголосовать: не нравится

We can solve 1677A - Tokitsukaze and Strange Inequality in more straightforward manner. 156343295

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    This is actually very good solution, i understood it better than the editorial itself.

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Sorry for being late, but can you please explain this solution?

    • »
      »
      »
      2 года назад, # ^ |
      Rev. 2   Проголосовать: нравится +4 Проголосовать: не нравится

      It's quite late already, but let me try:

      He's going through all possible A-C pairs by the 2 for loops and is storing B-D pairs count in DP.

      ii = C; jj = A; dp[jj] = pairs of B-D for the current A(=jj);

      if the number standing on index jj is less than on the number on ii, it means this pair is a valid A-C pair and he's adding all valid B-D pairs(=Cnt) for the current jj(=A). He has stored sum of all B-D pairs from ii down to jj(=from C down to A). Index A(=jj) isn't included, since he adds it after the summation.

      'Cnt+=dp[jj]' adds all valid B-D pairs into the current sum(=Cnt) for this A-C. And then he increases dp[jj] IF the value aa[jj] is greater than aa[ii], which basically is 'if(a[b]>a[d])'. This line ensures we have correct amount of valid B-D pairs in the dp.

      I hope this makes sense, although it's been quite a while since you asked.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    This solution is extremally elegant, it's just so good and clever, haven't seen something like this for quite a while, wp.

»
3 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Thanks for nice debugging template.

»
3 года назад, # |
  Проголосовать: нравится +79 Проголосовать: не нравится

I'm very sorry for question 1F in div1. This question is not only the same as the question( https://judge.yosupo.jp/problem/sum_of_exponential_times_polynomial) (I haven't seen it before), but it's really a garbage question. I'm very sorry for affecting the experience of div1 participants. I won't have such a problem next time.

My English is a little poor and may not be smooth.

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +32 Проголосовать: не нравится

    There is no need to say "something is garbage" because it has appeared before.

    Personally, I didn't solve the libchecker task, and I do learn something new from the task (especially from the comment from Elegia). So I really appreciate the task.

    On the other hand, I just don't quite like the "wrapping" part of task. Next time you can try to come up with something more interesting. :)

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Thank you for your comments. I agree with you. If possible, I will try to think of something more interesting.

»
3 года назад, # |
  Проголосовать: нравится +22 Проголосовать: не нравится

C was leaked on telegram. Link to the solution — https://ide.geeksforgeeks.org/cf163b70-3b16-4e83-a880-a9b2756fcf78. Please ban those who have cheated.

tokitsukaze MikeMirzayanov

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +3 Проголосовать: не нравится

dp states for problem B is wrong, please correct to

$$$dp[i][0]=min(dp[i-2][0]+\left \{c_0,0\right \},dp[i-2][1]+\left \{c_0,1\right \})$$$
$$$dp[i][1]=min(dp[i-2][0]+\left \{c_1,1\right \},dp[i-2][1]+\left \{c_1,0\right \})$$$

Solution link

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I did Problem C in O(n^2 logn) using binary search, got TLE. But the editorial says it will pass. How is this possible? My solution link : https://codeforces.net/contest/1678/submission/156353215

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    My solution is also O(n^2 logn) and it passes comfortably: I did it by brute-forcing b and c here

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Well theoretically it should not pass as the # of operations: O(5000*5000*13) = 3.25 * 10^8. And we can process 10^8 operations in 1 sec.

      • »
        »
        »
        »
        3 года назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        You assumed it takes exactly 1e8 operations in a second. I've seen somewhere I can't remember that its something like 4e8 or so(not sure but i'm sure 1e8 is just used as a rough estimate)... Also, stuff like compiler optimizations etc might happen.

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Function overhead + Higher constant?

»
3 года назад, # |
  Проголосовать: нравится +31 Проголосовать: не нравится

If you prefer command line, checkout CF Doctor for more flexibility and faster feedback.

If you are/were getting a WA/RE verdict on problems from this contest, you can get the smallest possible counter example for your submission on cfstress.com. To do that, click on the relevant problem's link below, add your submission ID, and edit the table (or edit compressed parameters) to increase/decrease the constraints.

Divison 2

Divison 1

If you are not able to find a counter example even after changing the parameters, reply to this thread (only till the next 7 days), with links to your submission and ticket(s).

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Hey! Getting the error "Constraints were violated." even with default values. Not sure what's wrong? Problem Div2D. Ticket 6965.

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится +1 Проголосовать: не нравится

      Hi codefforces I inspected the logs and your submission throws a compilation error when using C++17. (NOTE: C++20 support is officially not added yet).

      (You can confirm this by clicking on "View Logs" in the ticket status page, there you won't find any line denoting "Found failing test", indicating an early failure.

      I'll improve the error message shortly (and add C++20 support soon).

      I temporarily enabled C++20 support, and ran your submission again. Here's the failing testcase: Ticket 6975

      P.S: I know, I know. I also promised you another feature a couple of days back that I'm yet to work on. How come you're always the unlucky one to encounter these bugs? xD.

      • »
        »
        »
        »
        3 года назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Got it, thanks. Hahaha I'm a chaos monkey by coincidence. Btw it's satisfaction seeing cfstress grow day by day. Like a tree. Cheers!

»
3 года назад, # |
  Проголосовать: нравится +12 Проголосовать: не нравится

I think the most important observation for B1 & B2 is that we can just look at each digit-pair's index to determine whether we need to change it: specifically, if we have an "01" or "10" at an even position, we must change it, because finally every segment will be of even length so each such "01" or "10" must reside in a single segment instead of at the boundary of two segments.

  • »
    »
    3 года назад, # ^ |
    Rev. 3   Проголосовать: нравится +6 Проголосовать: не нравится

    Unfortunately I missed this observation during the contest and failed to solve B2... and solved B1 using a more complicated solution.

»
3 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Thanks for the good round!!! Thanks for the editorial!!!

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Why is it written in editorial that n*n*logn should pass in Div2C?

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    a problem can be solved by many methods,we should not think one problem only to one solution

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      But I got TLE on n*n*logn :(

      • »
        »
        »
        »
        3 года назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        May I have a look about your solution?

        • »
          »
          »
          »
          »
          3 года назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          This 156351799 solution was getting TLE.

          • »
            »
            »
            »
            »
            »
            3 года назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            I read through your code and noticed that there are a lot of copy-like or sort-like parts in your code, which will greatly increase the running time of your code by a constant multiple (roughly counted as 6 times). $$$O(n^2logn)$$$ is not an optimal solution in the first place, and will probably fail in the case of large constants. But your idea is roughly correct, you can try to maintain the steps of the array sorting section to maintain the previous and next values through the value field by O(n^2), thus avoiding the log

          • »
            »
            »
            »
            »
            »
            3 года назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            by the wall , you can use int instead of ll except the final answer

          • »
            »
            »
            »
            »
            »
            3 года назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится
»
3 года назад, # |
  Проголосовать: нравится +24 Проголосовать: не нравится

For Div. 2 C, this solution can also pass. Let suffix_count[i][v] be the number of elements in p[i..n] that is smaller than v. Similarly we have prefix_count[i][v]. Those two arrays can be calculated in O(n^2): first enumerate v then enumerate i and maintain the suffix/prefix total. Then you just enumerate all 1 < b < c < n, and for each pair of b and c just add suffix_count[c + 1][p[b]] * prefix_count[b - 1][p[c]] to the answer.

»
3 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

I read the first question wrong and wasted more than one hour in it. It feels frustrating :(

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Wait till you encounter a contest where you spend one hour to finish reading what Petya is up to.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Why does 156322948 this solution pass and 156357149 gives MLE. Both have O(n2) space complexity I think.

»
3 года назад, # |
Rev. 2   Проголосовать: нравится +6 Проголосовать: не нравится

Today's Div2c is similar to click here

»
3 года назад, # |
  Проголосовать: нравится +26 Проголосовать: не нравится

Can anyone explain more about the tutorial of div1 E? What's the difference algorithm and the a*R+b part?

  • »
    »
    3 года назад, # ^ |
    Rev. 9   Проголосовать: нравится +26 Проголосовать: не нравится

    Yeah I couldn't figure that out either, but here's an alternate solution.

    First, for each $$$x \in [1, n]$$$, precalculate:

    • the position $$$i$$$ where $$$p_i = x$$$, this can be done in $$$O(n)$$$,
    • the "active range", the maximal range $$$[l, r]$$$ in which $$$\max \{p_l, p_{l+1}, \ldots, p_r \} = x$$$, this can be done in $$$O(n \log n)$$$ with ordered sets, or $$$O(n)$$$ with monotonic stack

    There are $$$O(n \log n)$$$ triples $$$(a, b, c)$$$ where $$$1 \le a < b \le c \le n$$$ and $$$a \cdot b = c$$$. For each such triple we can find their positions in $$$p$$$; if they are all in $$$c$$$'s active range, then there is some $$$l_1, l_2, r_1, r_2$$$ where all segments $$$[l, r]$$$ where $$$l \in [l_1, l_2]$$$ and $$$r \in [r_1, r_2]$$$ are beautiful. You can imagine a $$$n \times n$$$ grid of cells where the $$$x$$$ and $$$y$$$ axes represent $$$l$$$ and $$$r$$$ respectively; this would translate to marking a rectangular region of the cells. Then the answer for each query $$$[l, r]$$$ is the number of marked cells in the region $$$x \in [l, r]$$$ and $$$y \le r$$$. (It turns out for later analysis that it's easier to count unmarked cells and subtract it from the area of the region)

    To speed this up, one might think of a 2D lazy segment tree with "region add" and "count zeros in region" (via minimum and frequency of minimum). But this is complicated, requiring an implicit storage strategy to cut down on space, and more importantly, may be too slow with total time complexity $$$O(n \log^3 n + q \log^2 n)$$$.

    Instead, we use only a 1D lazy segment tree and do a sweep line over the $$$y$$$ axis. Region add becomes two range adds, one positive and one negative. To implement "count zeros in region", we solve the queries offline, at time $$$y = r_i$$$. But we also need to implement a "tick" operation when advancing $$$y$$$, whose basic description is "if range minimum is $$$0$$$, add its frequency to a historic sum $$$zeros$$$"

    For a lazy segment tree to work, all possible range update operations, and compositions thereof, must be unified into a single small data structure that is cheap (preferably $$$O(1)$$$) to copy, compose, and apply, so we somehow need to summarize an arbitrary sequence of range adds and ticks into such a data structure.

    Multiple range adds are easy, just add their deltas. Multiple ticks are also pretty easy, just store the number of ticks elapsed, then perform them all at once using multiplication. However, range adds and ticks do not commute with each other, so it's not sufficient to merely store these counts separately.

    Turns out though, we only care about the ticks that happen when the range minimum is zero, and this can only happen when the delta (prefix sum of range adds) is at the minimum value. So any sequence of update operations can be summarized by a triple of values:

    • minimum delta (always non-positive),
    • number of ticks that happened during minimum delta,
    • current delta (sum of range adds)

    Final time complexity is $$$O(n \log^2 n + q \log n)$$$.

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      I have a similar solution 157331395 with the following differences:

      When generating rectangles for $$$c$$$, we can do a small tweak so no two rectangles intersect with each other, this will make the count easier. We use $$$(x1, y1, x2, y2), x1 \le x2, y1 \le y2$$$ to represent a rectangle.

      We do a sweep line over the $$$x$$$ axis, move $$$X$$$ from $$$1$$$ to $$$n$$$, we use two 1D segment trees:

      $$$F$$$: Count the cover of rectangles that are fully inside the current region, i.e. the rectangle's $$$x2 \le X$$$. Let $$$F_y = $$$ the number of covered cells $$$(x, y), 1 \le x \le X$$$. We just use the traditional "range add, query sum" segment tree.

      $$$G$$$: Count the cover of rectangles that are partially inside the current region, i.e. $$$x1 \le X \lt x2$$$. Each leaf node $$$G_y$$$ maintains:

        1. $$$x$$$: $$$x1$$$ of the rectangle covering column $$$y$$$, or 0 if it is not covered.

        2. $$$cnt$$$: 1 if column $$$y$$$ is covered, or 0 if it is not covered.

      Non-leaf nodes maintain the sum of $$$x$$$ and sum of $$$cnt$$$. It is a modification of "range set, query sum" segment tree. We need to add an extra field to indicate if the column is covered.

      For every rectangle whose $$$x1 = X$$$, add it to $$$G$$$. For every rectangle whose $$$x2 = X$$$, remove it from $$$G$$$ and add it to $$$F$$$.

      To calculate the number of covered cells inside rectangle region (1, 1, X, Y): Let $$$g$$$ = $$$G$$$.query(1, $$$Y$$$). The count = $$$g$$$.$$$cnt * (X+1) - g$$$.$$$x + F$$$.query(1. $$$Y$$$)

      • »
        »
        »
        »
        15 месяцев назад, # ^ |
        Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

        There is an easier way to do so:

        Let's say we want to find the "rectangles" for $$$p_i$$$. The active region of $$$p_i$$$ (maximal neighbourhood of $$$p_i$$$ having no number greater than itself) can be visualized as something like:

        (Each pair of cells at positions $$$x$$$ and $$$y$$$ with same colors has $$$p_x.p_y = p_i$$$)

        Let the active region of $$$p_i$$$ be $$$[L, R]$$$. Now notice that any valid (beautiful) range $$$[l, r] $$$which has its maximum as $$$p_i$$$ must have atleast one of these same color pairs completely within it. Now it's easy to see that any such maximal set of valid ranges having maximum as $$$p_i$$$ can also be generated if we completely ignore those pairs of colored cells which have another pair lying completely within them (for example in given image, yellow and blue can be removed).

        So we can ignore such "colors", and finally we are left with a set of pairs (two cells with same color constitute a pair) in which for any two pairs $$$(l_i, r_i)$$$ and $$$(l_j, r_j)$$$ if $$$l_i < l_j$$$ then $$$r_i < r_j$$$.

        The example shown above becomes:

        Now we can divide such a region into a $$$O(colors)$$$-sized set $$$S$$$ of quartets $$$(l_1, r_1, l_2, r_2)$$$ such that for any beautiful range $$$[l, r]$$$ having maximum as $$$P_i$$$, there exists one and only one element in $$$S$$$ $$$(a, b, c, d)$$$ such that $$$a \leq l \leq b$$$ and $$$c \leq r \leq d$$$.

        How to do so? Just sort the set of colored pairs by their first element. The quartet corresponding to the $$$i$$$'th colored pair is $$$(L, l_i, r_i, (r_{i + 1} - 1))$$$ (for last pair, $$$(r_{i + 1} - 1) = R$$$).

        Our example becomes:

        (for each color, a valid range is that which has left border in left group of some colored cells, and right border in right group of cells with same color)

        Implementation: link

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Hi can someone tell me why this code times out on Div2.C. I am new to segment trees but I knew there was a way to use it to find the number of elements less than x within a given range, so I took the code online and tried it but it times out. Any help is appreciated. Thank you https://codeforces.net/contest/1678/submission/156367158

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    I might be wrong but I think it is just because of constants. Segment tree already has very big constants and your implementation uses vectors which adds more constants and is not necessary. Try to use a Fenwick tree instead which is strictly O(logN).

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    you need O(n^2) to pass this problem.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Participating in div2 contest was pretty hard for me because of B2 being so strange. Anyway, I upsolved this contest and I have 1 question: How D2F (D1D) is supposed to be D2F? It seems pretty like D2D for me, and I spent much more time on D2D/D2E, than on D2F

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone please help me understand what the variable y means in the greedy solution for problem B2? I've been trying to wrap my head around the greedy solution, but I'm just not getting it.

»
3 года назад, # |
  Проголосовать: нравится -17 Проголосовать: не нравится

sjfsb

»
3 года назад, # |
  Проголосовать: нравится +48 Проголосовать: не нравится

I cannot understand why I have to check if it is impossible to make original permutations in div1 D. In statement, you said that the unclear value sequence was originated from some value sequence that Tokitsukaze made. So I think the unclear value sequence of the problem must have at least one correct original permutation.

»
3 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Div-2 C is kind of hard to understand from the tutorial. Anyone else having problem too?

»
3 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

div-2, Problem B, this problem is an example of how valuable a good observation is!

»
3 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Problem E $$$2c * (N - c)$$$ is obtained from the following: We choose the largest $$$c$$$ numbers from 1 ~ N with positive contribution and smallest $$$c$$$ numbers from 1 ~ N with negative contribution. The answer is twice the sum.

$$$2 * [-(1 + 2 + ... + c) + (N - c + 1) + (N - c + 2) + ... + N]$$$

$$$= 2 * [-(c + 1) * c / 2 + (2 * N - c + 1) * c / 2]$$$

$$$= c * (2 * N - 2 * c)$$$

$$$= 2c * (N - c)$$$

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In div1. C, can someone give formal proof for why alternating between maximum and minimum, maximizes the beauty?

»
3 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Could't solve B2. It seems like a greedy problem but instead it's dp, and I didn't even think of dp:(

»
3 года назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

Can anyone explain how was the below formula in the problem Tokitsukaze and Two Colorful Tapes Div 1 C derived:

c=∑⌊CircleSize / 2⌋, N represents the size of the permutation, score=2c⋅(N−c).

I understood the part of valleys and peaks. But I can not seem to connect that with this formula which is said to be derived from the summation formula of the arithmetic sequence.

  • »
    »
    3 года назад, # ^ |
    Rev. 2   Проголосовать: нравится +5 Проголосовать: не нравится

    So I finally found out how we can get the score value from the summation formula of the arithmetic sequence. Here if we consider all the cycles then it will be a series of positive peak values and a series of negative valley values. So we need to take the highest peak with the lowest valley. So it would be like this:
    (2*h_maxpeak — 2* h_minvalley),(2*h(maxpeak-1) — 2*h_(minvalley+1)),...._
    This is how the series will go. If we have odd cycles then the last terms will get reduced. So if we consider n=10. This is how the series will go:

    (Sorry for picture . I am not that adept yet to write equations in spoiler. Any help or resource on how to write equations in codeforces will be appreciated)

    Please feel free to correct me if I have made any mistakes

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

in question B1 can someone explain me this test case 110011000

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    your test case is wrong since n is guaranteed to be even and len(110011000)=9 which is odd ,read the problem again.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For div1 B I need help understanding the part of the tutorial about the rows

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I tried doing div2 C with segment tree in n^2logn, but it tle's 157247666

»
3 года назад, # |
Rev. 4   Проголосовать: нравится +10 Проголосовать: не нравится

Ladies and gentlemen, we got him!

I'm talking about div1F: the coefficients don't need to be interpolated, we have a direct (but not closed-form) formula.

Consider the Mellin operator $$$\mathsf{O} = x \frac{\mathrm{d}}{\mathrm{d}x}$$$. We want to find $$$h_{k,n} = \mathsf{O}^k \frac{Px-(Px)^{n+1}}{1-Px}$$$ for $$$x=1$$$ (yes, starting the sum from $$$1$$$ even for $$$k=0$$$). This operator follows the general Leibniz rule:

$$$h_{k,n} = \sum_j \left. {k \choose j} \mathsf{O}^{k-j} (1-(Px)^n) \mathsf{O}^j Px (1-Px)^{-1} \right|_{x=1} = \sum_j {k \choose j} (0^{k-j} - P^n n^{k-j}) \left. \mathsf{O}^j Px (1-Px)^{-1} \right|_{x=1}$$$

with proof by induction: it follows the Leibniz rule trivially for $k=0$ and

$$$\mathsf{O}^{k+1} (fg) = x \frac{\mathrm{d}}{\mathrm{d}x} \sum_j {k \choose j} \mathsf{O}^j f \cdot \mathsf{O}^{k-j} g = \sum_j {k \choose j} x (\frac{\mathrm{d}}{\mathrm{d}x}\mathsf{O}^j f \cdot \mathsf{O}^{k-j} g + \mathsf{O}^j f \cdot \frac{\mathrm{d}}{\mathrm{d}x}\mathsf{O}^{k-j} g) =$$$
$$$= \sum_j {k \choose j} (\mathsf{O}^{j+1} f \cdot \mathsf{O}^{k-j} g + \mathsf{O}^j f \cdot \mathsf{O}^{k-j+1} g) = \sum_j \left({k \choose j} + {k \choose j-1}\right) \mathsf{O}^j f \cdot \mathsf{O}^{k+1-j} g \,.$$$

We need to express $D_k = \left. \mathsf{O}^k Px (1-Px)^{-1} \right|_{x=1}$. Ansatz $$$D_k = f_k(x) (1-Px)^{-k-1}$$$ gives a recurrence

$$$f_{k+1}(x) = (1-Px) \mathsf{O} f_k(x) + P (k+1) x f_k(x)$$$

which together with $f_0(x)=Px$ says $$$f_k$$$ is a polynomial with degree $$$k+1$$$ (proof by induction); denoting its coefficients by $$$f_{k,j} P^j$$$, we have

$$$f_{k+1,j} = j f_{k,j} + (k+2-j) f_{k,j-1}$$$

which is the formula for Eulerian numbers (shifted so indices start at $1$ and $$$f_{k,0}=0$$$). In short, $$$D_k = P A_k(P) (1-P)^{-k-1}$$$ where $$$A_k(x)$$$ is the $$$k$$$-th Eulerian polynomial. Btw, this is in Wikipedia too (with a mistake, unsurprisingly for Wikipedia).

$$$h_{k,n} = \sum_j {k \choose j} (0^{k-j} - P^n n^{k-j}) P A_j(P) (1-P)^{-1-j} = \frac{P A_k(P)}{(1-P)^{1+k}} - \frac{P^{n+1} n^k k!}{1-P} \sum_{j=0}^k \frac{1}{(k-j)!} \frac{A_j(P)}{j! n^j (1-P)^j}$$$

How do we calculate $A_k(P)$ for $$$k \le K$$$? Eulerian polynomials have been studied extensively. We can use the formula $$$A_k(P) - \sum_{j\lt k} {k \choose j} A_j(P) (P-1)^{k-1-j} = 0$$$ for $$$k \gt 0$$$, which can be rewritten to

$$$\left(1-\frac{1}{1-P}\right)\frac{A_k(P)y^k}{k!(1-P)^{k+1}} + \sum_{j=0}^k \frac{A_j(P)y^j}{j!(1-P)^{j+1}} \frac{(-1)^{k-j}y^{k-j}}{(k-j)!(1-P)} = 0$$$

and this gives us a way to express the generating function $G(y) = \sum_k \frac{A_k(P)y^k}{k!(1-P)^{k+1}}$ as

$$$G(y) = A_0(P) / \left(e^{-y}-P\right) = \left(e^{-y}-P\right)^{-1}$$$

so all we need to do is invert a polynomial.

Next, we can define a generating function of $h_{k,n}/k!$ for fixed $$$n$$$:

$$$H(z) = \sum_k h_{k,n} \frac{z^k}{k!} = P \sum_k \frac{A_k(P)z^k}{k!(1-P)^{k+1}} - P^{n+1} \sum_{j=0}^k \frac{n^{k-j}z^{k-j}}{(k-j)!} \frac{A_j(P)z^j}{j! (1-P)^{j+1}} = P G(z) - P^{n+1} e^{nz} G(z)$$$

so what we're looking for is the $K$-th coefficient (multiplied by $$$K!$$$) of $$$\frac{1}{e^{-z}-P}\sum C_i (P-P^{n_i+1}e^{n_iz})$$$ where $$$C_i$$$ are the coefficients mentioned at the start of the editorial and computed in $$$O(N)$$$. I don't think this can be computed easily, multipoint evaluation seems better — but at least we got rid of interpolation.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For problem 1677A my submission has O(n^2) time complexity but it receives a TLE. Can anyone explain why?

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    you code complexity is O(n^4) not O(n^2) as you run nested loop on the two vectors which they contain O(n^2) elements so total complexity is O(n^4) ,try another approach.

    O(n^4) not O(n^2)
»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can someone explain me the answer for rows in the problem 1677B — Tokitsukaze and Meeting

»
2 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

whoever wrote the editorial for div1c Tokitsukaze and Two Colorful Tapes is really a terrible writer

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I didnt get the dp solution in b2 especially how did he got the cost calculating formula , can somebody help

»
2 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится
I solved 
1677A - Tokitsukaze and Strange Inequality...using 2D prefix sum..O(n^2)..

``mySubmission

»
17 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Thanks for the Chinese version of the tutorial.

»
5 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I thought of a weird solution for C but it uses 3 ordered sets... The names a,b,c,d refers to indices in sync with the context of the question. I maintain an ordered set that initially contains all the elements but as we keep on erasing all the elements till the index c (as c moves forward) this set then represents the potential candidates for d since we can just use order of key for element(b) and get to know the number of possible options for this current b...

Now, at the same time we have an 'a' as well that is behind b (think of 2 for loops one decides b and the other decides c). Also, the elements in (b,c] are to be kept in another ordered set and [0,b) are to be kept in another ordered set and similarly use find by order for current ele(c) on the ordered set that contains ele in range [0,b). Deciding b and c using for loops is O(n^2) while find by order and similar operations take o(logn). Would this TLE???