Блог пользователя chokudai

Автор chokudai, история, 20 месяцев назад, По-английски

We will hold AtCoder Beginner Contest 296.

We are looking forward to your participation!

  • Проголосовать: нравится
  • +47
  • Проголосовать: не нравится

»
20 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to solve F?

  • »
    »
    20 месяцев назад, # ^ |
    Rev. 2   Проголосовать: нравится +4 Проголосовать: не нравится

    Key observation $$$1$$$: Swapping $$$(i, j)$$$ in $$$A$$$ and $$$(i, k)$$$ in $$$B$$$ is equal to swapping $$$(i, k)$$$ in $$$B$$$ first followed by swapping $$$(i, j)$$$ in $$$B$$$. Therefore, we can always fix $$$A$$$ and operate on $$$B$$$ to make $$$B$$$ equals to $$$A$$$. Note that $$$(i k)(i j)$$$ could be merged into a rotation of three words, we call them $$$3$$$-rotations.

    Key observation $$$2$$$: The answer is "Yes" iff $$$B$$$ is an even permutation of $$$A$$$. $$$B$$$ always swap even times, so if $$$B$$$ can reach $$$A$$$, $$$B$$$ is an even permutation. On the other hand, it is well-known that the alternative group $$$A_n$$$ (which consists of all even permutations) are generated by $$$3$$$-rotations $$$\{(123), (124), ..., (12n)\}$$$, therefore, if $$$B$$$ is an even permutation, then $$$B$$$ can convert into $$$A$$$.

    Key observation $$$3$$$: If the content of $$$A$$$ and $$$B$$$ are different, it is impossible. Otherwise, if there are duplicate elements in $$$A$$$, it is always possible, as we can add a dummy swap between two elements with the same value to make an even permutation. Finally, we only need to consider the case where all elements are distinct. We can use the merge sort to calculate its inversion number in $$$O(nlogn)$$$.

»
20 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Solve $$$A, B, C, E, F$$$ but WA on $$$D$$$ $$$8$$$ times. How $$$D$$$ please?

Upd: I am an idiot. I wrote something like $$$n \times n$$$ which easily overflows.

»
20 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится
Spoiler

what's going wrong in this 51 TestCases Passes and 5 Failed.

»
20 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In $$$G$$$ was killed by just only one case: when query point is equal to rightmost point in polygon.

  • »
    »
    20 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    How did you approach G?

    • »
      »
      »
      20 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      This is mostly implementation based problem without any thinking. There is algorithm for checking if point lies in convex polygon.

      First we do cyclic shift on polygon such that its leftmost point becomes minumum. Then for all other point $$$atan2(y[i] - y[0], x[i] - x[0]) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$$. Then we precalc for every $$$i$$$ this $$$atan2$$$. This is increasing array.

      We have a query point. We have to check in which triangle of points with indices $$$0, i, i+1$$$ does in lie. Use lower_bound to do it in $$$log{n}$$$. Now we have to check, if point is in corresponding triangle and is on corresponding segment. To remove many ifs and epsilons and make life easier, we just apply these checks to all $$$[max(0, i - 3), min(n - 1, i + 3)]$$$.

      Now we only have to check, if point is on segment, and if point is in triangle. This can be done in integers.

»
20 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится
»
20 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

https://atcoder.jp/contests/abc296/submissions/40253903 can someone give a example where this fails.

»
20 месяцев назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Submission — one of the shortest solution to problem E using binary jumps

  • »
    »
    20 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Can you explain the approach?

    • »
      »
      »
      20 месяцев назад, # ^ |
      Rev. 3   Проголосовать: нравится +3 Проголосовать: не нравится
      Step 1