How to solve A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, and Q?
(I'm only curious about N and O, but I might as well ask them all in case others are curious about other problems)
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
How to solve A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, and Q?
(I'm only curious about N and O, but I might as well ask them all in case others are curious about other problems)
Название |
---|
In O: let's assume M_i,i = 1, and a_i = M_i, i+1. then the terms on the kth diagonal are (a_i ... a_i+k) / k!
Knowing this, if we look at a specific prime power p, the condition for M_xy is equivalent to a condition on the total number of times p divides a_x..a_y. We can solve it using negative-weight shortest-path finding in a graph.
orz