How to solve A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, and Q?
(I'm only curious about N and O, but I might as well ask them all in case others are curious about other problems)
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3831 |
3 | Radewoosh | 3646 |
4 | jqdai0815 | 3620 |
4 | Benq | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | gamegame | 3386 |
10 | ksun48 | 3373 |
# | User | Contrib. |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 160 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
How to solve A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, and Q?
(I'm only curious about N and O, but I might as well ask them all in case others are curious about other problems)
Name |
---|
In O: let's assume M_i,i = 1, and a_i = M_i, i+1. then the terms on the kth diagonal are (a_i ... a_i+k) / k!
Knowing this, if we look at a specific prime power p, the condition for M_xy is equivalent to a condition on the total number of times p divides a_x..a_y. We can solve it using negative-weight shortest-path finding in a graph.
orz