Блог пользователя UnexpectedValue

Автор UnexpectedValue, 9 месяцев назад, По-английски

We invite you to participate in CodeChef’s Starters123, this Wednesday, 28th February, rated till 6-Stars (i.e., for users with rating $$$< 2500$$$). This contest is organized by Jadavpur University Electrical Engineering Students' Forum for Algomaniac 2024.

Time: 8:00 PM — 10:30 PM IST

Algomaniac is the CP event of Convolution, the annual techno-management fest of the Department of Electrical Engineering, Jadavpur University. The contest will serve as an online preliminary round for an on-site final on March 17, 2024. To be eligible to participate in the finals, one must register on the Convolution 2024 website.

Joining us on the problem setting panel are:

Written editorials will be available for all on discuss.codechef.com. Pro users can find the editorials directly on the problem pages after the contest. The video editorials of the problems will be available only to Pro users.

Also, if you have some original and engaging problem ideas, and you’re interested in them being used in CodeChef's contests, you can share them here.

UPD: The contest duration has been extended by 30 minutes to a total of 2 hours 30 minutes.

Registration for the prelims closes on February 28 at 7:59 P.M.

Below are the salient details about the offline finals of Algomaniac 2024:

  • Partcipants must register on the Convolution 2024 website to be eligible for the final round. More details and event rules are available on the website itself. We suggest going through the event rules thoroughly.
  • A total of 15 participants will be selected from the registered participants based on a merged ranklist provided by CodeChef.
  • Finalists shall be given certificates, and the top 3 positions will be given cash prizes from a prize pool of INR 15,000.
  • Any further information about the finals will be communicated to the selected finalists via email.

Should you have any queries about the event, feel free to reach out to me (UnexpectedValue) or Whimsical_HITMAN.

Algomaniac-CF-Banner

Hope to see you participating.

Good Luck!

  • Проголосовать: нравится
  • +53
  • Проголосовать: не нравится

»
9 месяцев назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

Dominater069 orz

UnexpectedValue orz

Also this is my first time setting so I hope you enjoy the problems! >.<

»
9 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Excited and Best of luck to all contestants! :)

»
9 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Excited and All the Best !!

»
9 месяцев назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

Thank you for announcing the rated range in advance!

»
9 месяцев назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится
»
9 месяцев назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Is it possible to announce the number of problems in all divisions beforehand?

»
9 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Great round with interesting dp and graph problems. I usually like these kinds of round better than rounds filled with random binary string problems.

»
9 месяцев назад, # |
Rev. 3   Проголосовать: нравится +1 Проголосовать: не нравится

I hope everyone will enjoy this. May your Leap Day is going to be fun!

»
9 месяцев назад, # |
Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

Is trial of conqueror finding max of $$$f(x)$$$ where $$$f(x)$$$=count of leafs which are at distance <= $$$k$$$ from node $$$x$$$?

»
9 месяцев назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Div2 was speedforces

»
9 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In the problem XOR Partition Sort, can someone explain me how to find the next right index in a simpler way? I am having a hard time to understand the editorial.

For example, if we take our array as $$$[1, 2, 3]$$$, then for index $$$a[0] = 1$$$, if in binary search, we check for $$$[i, j] = [0, 2]$$$, then for bit $$$2^0 = 1$$$, it looks we have one pair each of set and unset case, as numbers $$$(2, 3)$$$ and $$$(1, 2)$$$ respectively. So, by editorial there is a "conflict", but we know that it is already sorted, right?

»
9 месяцев назад, # |
Rev. 3   Проголосовать: нравится +1 Проголосовать: не нравится

.