How to solve this problem?
find the number of permutations of length N that have longest increasing subsequence equal to K
1<=N<=40 , 1<=K<=5 problem link
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
How to solve this problem?
find the number of permutations of length N that have longest increasing subsequence equal to K
1<=N<=40 , 1<=K<=5 problem link
Название |
---|
There's an array (let's call it $$$d$$$) used in the standard algorithm for finding the longest increasing subsequence. We are interested in its first five elements. Recall that the input is a permutation. We see that $$$\mathit{choose} (40, 5) = 658\,008$$$. So perhaps we can devise a dynamic programming solution. The state can be the first five numbers of the array $$$d$$$.