how to solve this problem??
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | djm03178 | 152 |
7 | adamant | 152 |
9 | luogu_official | 151 |
10 | awoo | 147 |
how to solve this problem??
Name |
---|
You can do this by binary searching the answer which is checked valid by:
1.making a graph with cost sqrt(|x_j-x_i-L|) — R * b_j and always x_j > x_i.
2.In this graph,find shortest path from x0 to xn (take x0 as a dummy start).
3.Once you get the optimal value you backtrace the waiting pts you took.
For further reading Editorial's comment
His submission for this method Submission
EDIT:Congrats for becoming the Training and Placement Representative
What is R? and why is the cost taken as sqrt(|x_j-x_i-L|) — R * b_j
u can call it the present value in the binary search or mid.