how to solve this problem??
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
how to solve this problem??
Название |
---|
You can do this by binary searching the answer which is checked valid by:
1.making a graph with cost sqrt(|x_j-x_i-L|) — R * b_j and always x_j > x_i.
2.In this graph,find shortest path from x0 to xn (take x0 as a dummy start).
3.Once you get the optimal value you backtrace the waiting pts you took.
For further reading Editorial's comment
His submission for this method Submission
EDIT:Congrats for becoming the Training and Placement Representative
What is R? and why is the cost taken as sqrt(|x_j-x_i-L|) — R * b_j
u can call it the present value in the binary search or mid.