# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Name |
---|
In fact there are many generalizations of Cayley theorem (though I didn't know that particular one).
One was given as a problem on Putnam competition one year ago: http://www.artofproblemsolving.com/Forum/viewtopic.php?p=3315688&sid=56608f6bc111f1ce8bcfb33ff1220ce3#p3315688
Here is another one I know. Assume that we want to compute number of forests on n vertices with k trees such that vertices with indiced 1, ..., n belong to other trees. Then number of them is equal to knn - k - 1.
Despite the fact that there are many of them I always got problems even with proving basic version :p.