Блог пользователя dcordb

Автор dcordb, 10 лет назад, По-английски

I'm stuck in this problem:
http://acm.timus.ru/problem.aspx?space=1&num=1989

It gives me TLE on test 15, my code uses Hashing and Fenwick Tree, so it's O(mlogn). The time limit is only 0.5s. Is there a better solution? (an O(m) solution).
Thanks in advance.

  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

»
10 лет назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

I got accepted on this problem with almost the same approach as you suggested. The only difference is Segment Tree instead of Bit. You probably have a bug somewhere in your code.

»
10 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

You should post your code...

  • »
    »
    10 лет назад, # ^ |
    Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

    Here is my code, sorry that I put it here like this, right now I don't have access to ideone.

    #include <cstdio>
    #include <cstring>
    using namespace std;
    
    typedef long long int64;
    const int MAX = 1e5 + 5;
    const int64
        B = 37,
        MOD = 1e9 + 7;
    int n, m;
    int P[MAX];
    char A[MAX];
    
    struct bit {
        int tree[MAX];
    
        void update(int x, int val) {
            for(int i = x; i <= n; i += (i & -i))
                tree[i] = (tree[i] + val) % MOD;
        }
    
        int query_at(int x) {
            int sum = 0;
    
            if(x < 1)
                return sum;
    
            for(int i = x; i > 0; i -= (i & -i))
                sum = (sum + tree[i]) % MOD;
    
            return sum;
        }
    
        int query(int a, int b) {
            return (query_at(b) - query_at(a - 1) + MOD) % MOD;
        }
    } T1, T2;
    
    int main() {
        //freopen("a.in", "r", stdin);
        //freopen("a.out", "w", stdout);
    
        scanf("%s%d", A + 1, &m);
        n = strlen(A + 1);
    
        P[0] = 1;
        for(int i = 1; i <= n; i++) {
            int64 val = (A[i] - 'a') * 1LL * P[i - 1];
            val %= MOD;
            T1.update(i, val);
    
            val = (A[n - i + 1] - 'a') * 1LL * P[i - 1];
            val %= MOD;
            T2.update(i, val);
    
            int64 tmp = (P[i - 1] * 1LL * B) % MOD;
            P[i] = tmp;
        }
    
        while(m--) {
            char s[20]; scanf("%s", &s);
    
            if(s[0] == 'c') {
                int x; char c; scanf("%d %c", &x, &c);
                int64 val = (c - 'a') * 1LL * P[x - 1];
                val %= MOD;
                int q = T1.query(x, x);
                T1.update(x, (val + 0LL - q + MOD) % MOD);
    
                x = n - x + 1;
                val = (c - 'a') * 1LL * P[x - 1];
                val %= MOD;
                q = T2.query(x, x);
                T2.update(x, (val + 0LL - q + MOD) % MOD);
    
                continue;
            }
    
            int a, b; scanf("%d%d", &a, &b);
            int na = n - b + 1, nb = n - a + 1;
            int64 val1 = T1.query(a, b), val2 = T2.query(na, nb);
    
            if(na >= a)
                val1 = (val1 * 1LL * P[na - a]) % MOD;
    
            else val2 = (val2 * 1LL * P[a - na]) % MOD;
    
            printf(val1 == val2 ? "Yes\n" : "No\n");
        }
    
        return 0;
    }
    

    PD: I've updated my code, I realize that I don't need modular inverses (to compare the hashings) at all. But it still gives me TLE on test 16. In my PC with a full test case it runs in ~0.25s.

»
10 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Any ideas why it gives me TLE? I found a solution on the internet which uses segment tree and it gives AC. I mean WTF?? (segment tree has a bigger constant that Fenwick Tree)

»
10 лет назад, # |
  Проголосовать: нравится -8 Проголосовать: не нравится

I think that you have TLE because use mod operation many times ( this operation is slow ). You can easily decrease search operation to O(1). Use array, at position i you store sum from 0 to i. Now sum in [L;R] is sum[R] — sum[L-1].

»
10 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Is there any way to improve the complexity of the modulo operation??