I'm having a little trouble proving the following:
If
then
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
I'm having a little trouble proving the following:
If
then
Название |
---|
Here's what I came up with:
. And we can write k as c·m + d, with d < m.
So we want to show that .
The left hand side obviously simplifies to d.
On the right hand side we get: . The c·m·b vanishes, because of the modulo. And since d < m, d·b mod (m·b) = d·b. So it simplifies to too, which completes the proof.
Hope that helps :)