Блог пользователя TooDumbToWin

Автор TooDumbToWin, история, 8 лет назад, По-английски

Problem Statement: https://www.codechef.com/COOK73/problems/MADHAT

My implementation: http://ideone.com/u9Av7q

Here's what I did:

First, I assigned temp[i] to the index of kid with just higher IQ than IQ of kid at index i (as per the given data). filltemp is the recursive function to assign temp[i] to each i. (temp[i] for kid with maximum IQ is n) (Check example below for details)

Then, the answer should be the number of topological orderings in tree with directed edges from temp[i] to i, starting from kid with with maximum IQ.

To find the number of topological orderings, I used dfs as each branch of tree is independent.

I'm getting WA for this implementation, can anyone explain the test case that'll give WA on this?

Example:

n=4 x=[0,2,1,0]

I know following relations using x.

  • IQ[1]>IQ[0] since x[0]=0
  • IQ[2]<IQ[1] and IQ[3]<IQ[1] since x[1]=2
  • IQ[3]<IQ[2] since x[2]=1

So my temp becomes [1,4,1,2] and the edges in tree are 4->1, 1->0, 1->2, 2->3

The number of topological sorts are 3, which is the right answer for this test case.

Why number of topological orderings is the answer? Because, suppose I traverse the tree in this order: 1,2,0,3. Now I'll assign IQ of kids in decreasing order from n to 1 as per the sorting. That is, IQ[1]=4, IQ[2]=3, IQ[0]=2, IQ[3]=1.

Other topological orderings for this example are 1,2,3,0 and 1,0,2,3 which generates two other respective IQ array.

  • Проголосовать: нравится
  • +7
  • Проголосовать: не нравится

»
8 лет назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

your code fails on

1

3

2 1 0

  • »
    »
    8 лет назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    Thanks for the test case. It was a minor implementation mistake on my part. I've updated the code, but its still giving WA. Any further hints?

»
8 лет назад, # |
  Проголосовать: нравится -9 Проголосовать: не нравится

BLOG IS COOL!

»
8 лет назад, # |
  Проголосовать: нравится -17 Проголосовать: не нравится

LOL

»
8 лет назад, # |
  Проголосовать: нравится -18 Проголосовать: не нравится

KEK

»
8 лет назад, # |
  Проголосовать: нравится -18 Проголосовать: не нравится

GGWP EASY

»
8 лет назад, # |
  Проголосовать: нравится -10 Проголосовать: не нравится

NICE