Please tell the complexity of http://www.geeksforgeeks.org/maximum-bipartite-matching/ ?
And if we use directly Ford-Fulkerson Algorithm, will it be better?
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Please tell the complexity of http://www.geeksforgeeks.org/maximum-bipartite-matching/ ?
And if we use directly Ford-Fulkerson Algorithm, will it be better?
Name |
---|
Maximum Bipartite Matching with Ford-Fulkerson takes O(VE) time. Using Dinic instead of Ford-Fulkerson (or Edmonds Karp for that matter; note that Edmonds Karp always find the shortest augmenting path instead of finding a random path), you can achieve a complexity of .
Can you plz explain the complexity of the link I provided?
Secondly when and how Ford-Fulkerson Algorithm becomes better?
In the link, the bipartite matching is done using Ford-Fulkerson, so the complexity is O(VE).
I don't understand your second question.
A very good source to learn Max-Flow is CLRS. There's an entire chapter dedicated to network flows. You should read it.